Xác định giá trị của x để số dư trong phép chia sau bằng 0
(3x^5-x^4-2x^3+x^2+4x+5):(x^2+2-2x)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
TÌM GIÁ TRỊ CỦA X ĐỂ ĐA THỨC DƯ TRONG MỖI PHÉP CHIA SAU CÓ GIÁ TRỊ BẰNG 0
a) \(\left(3x^5-x^4-2x^3+x^2+4x+5\right)\div\left(x^2-2x+2\right)\)
Thực hiện phép chia đa thức ta được :
3x5 - x4 - 2x3 + x2 + 4x + 5 : ( x2 - 2x + 2 ) = ( 3x3 + 5x2 + 2x - 5 ) dư ( -10x + 15 )
Vậy để dư bằng 0 thì -10x + 15 = 0 <=> 3/2
Vậy x = 3/2
1. với giá trị nào của x thì đa thức dư trong mỗi phép chia sau có giá trị bằng 0
a) (2x^4-3x^3+4x^2+1) : (x^2-1)
b) (x^5+2x^4+3x^4+x-3) : (x^2+1)
1. với giá trị nào của x thì đa thức dư trong mỗi phép chia sau có
giá trị bằng 0
a) (2x^4-3x^3+4x^2+1) : (x^2-1)
b) (x^5+2x^4+3x^4+x-3): (x^2+1)
a: \(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để số dư là 0 thì -3x+7=0
hay x=7/3
b: \(=\dfrac{x^5+x^3+2x^4+2x^2+2x^3+2x-2x^2-2-x-1}{x^2+1}\)
\(=x^3+2x^2+2x-2+\dfrac{-x-1}{x^2+1}\)
Để số dư là 0 thì -x-1=0
hay x=-1
giúp mình vs
bài 1: Tìm giá trị của X để đa thức trong mỗi phép chia sau có giá trị bằng
a,(3x^5 - x^4-2x^3+x^2+4x+5):(x^2-2x+2)
b,(2x^4-11x^3+19x^2-20x+9):(x^2-4x+1)
c,(x^5+2x^4+3x^2+x-3):(x^2+1)
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau bằng 0
a) (3x^5-x^4-2x^3+x^2+4x+5) : (x^2-2x+2)
b) (x^5+2x^4+3x^2+x-3) : (x^2+1)
a: \(=\dfrac{3x^5-6x^4+6x^3+5x^4-10x^3+10x+2x^3-4x^2+4x+3x^2-6x+6-4x-1}{x^2-2x+2}\)
\(=3x^3+5x+2x+3+\dfrac{-4x-1}{x^2-2x+3}\)
Để dư=0 thì -4x-1=0
=>x=-1/4
b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)
\(==x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)
Để dư=0 thì 2x-4=0
=>x=2
Bài 7: Tìm x để đa thức dư trong phép chia bằng 0
1) (2x^4-3x^3+4x^2+1) : (x^2-1)
2) ( x^5 + 2x^4+3x^2+x-3) : (x^2 +1)
1: \(=\dfrac{2x^4-2x^2-3x^3-3x+6x^2-6+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{7}{x^2-1}\)
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
Bài 1: Tìm giá trí của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0.
a, (3x5-x4-2x3+x2+4x+5):(x2-2x+2)
b, (2x4-11x3+19x2-20x+9):(x2-4x+1)
c, (x5+2x4+3x2+x-3):(x2+1)
thực hiện phép chia và tìm x để số dư bằng 0
a)(x^3-x^2-14x+24):(x^3+x-12)
b)(x^5+4x^3+3x^2-5x+15);(x^3-x+3)
c)(2x^4+2^3+3x^2-5x-20):(x^2+x+4)
d)(2x^4-14x^3+19x^2-20x+9):(x^2-4x+1)
giúp mk gấp vs ah!!!!!!