Những câu hỏi liên quan
NH
Xem chi tiết
TP
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
HN
2 tháng 11 2016 lúc 17:41

Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z 

Bạn áp dụng vào nhé.

Bình luận (0)
LH
2 tháng 11 2016 lúc 18:29

Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)

Ta có :

\(x^2+y^2+z^2=xy+xz+yz\)

\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)

\(\Rightarrow x-y=x-z=y-z=0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)

Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)

\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)

\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)

Bình luận (0)
NN
2 tháng 11 2016 lúc 20:13

Mình chưa học cách làm như thế. Chẳng hiểu gì hết. các bạn có thể làm theo cách khác không?

Bình luận (0)
LM
Xem chi tiết
HT
Xem chi tiết
DA
Xem chi tiết
TQ
19 tháng 1 2020 lúc 18:13

a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)

suy ra x-1 và x+2 trái dấu

Mà x-1<x+2

\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)

\(\Rightarrow-2\le x\le1\)

b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)

Do đó x<2 mà\(x\inℕ\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Với x=0 thì y=2015/2013(Loại)

Với x=1 thì y=2014/2013(Loại)

Vậy...............

Bình luận (0)
 Khách vãng lai đã xóa
H24
19 tháng 1 2020 lúc 18:33

                                                             Bài giải

a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)

Do \(\left(2x^2+1\right)\ge0\)

Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0

Mà \(x-1< x+2\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)

Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
HN
Xem chi tiết
NC
9 tháng 12 2019 lúc 21:46

Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)

=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)

\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)

Vậy gtnn của M = 2018 đạt tại x = y = 0.

Bình luận (0)
 Khách vãng lai đã xóa