Những câu hỏi liên quan
NT
Xem chi tiết
H24
5 tháng 7 2023 lúc 17:09

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)

Bình luận (0)
GH
Xem chi tiết
LL
27 tháng 9 2021 lúc 11:20

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

Bình luận (0)
8H
Xem chi tiết
AH
20 tháng 3 2022 lúc 17:08

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

Bình luận (0)
HT
Xem chi tiết
NC
23 tháng 9 2019 lúc 14:38

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
BB
Xem chi tiết
NA
Xem chi tiết
TH
23 tháng 3 2022 lúc 22:59

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

Bình luận (0)
CL
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NM
Xem chi tiết
KS
5 tháng 11 2019 lúc 21:31

\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)

\(\Leftrightarrow2abc+a^2+b^2+ab=abc^2\)

\(\Leftrightarrow\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a+b\right)^2=ab\left(c-1\right)^2\)

\(\Rightarrow ab>0\) , ab là bình phương của số hữu tỉ

\(\Rightarrow c-1=\frac{a+b}{\sqrt{ab}}\)

\(\Rightarrow c+1=\frac{a+b}{\sqrt{ab}}+2=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)^2\)

Khi đó : \(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\) là số hữu tỉ do ab là bình phương của số hữu tỉ 

\(\Rightarrow\frac{c-3}{c+1}\) là bình phương của số hữu tỉ ( đpcm )

Bình luận (1)
 Khách vãng lai đã xóa
H24
11 tháng 4 2021 lúc 20:52

Bạn ơi sao mà ab la bình phương số hữu tị vậy ạ ?

Bình luận (0)
 Khách vãng lai đã xóa