Những câu hỏi liên quan
H24
Xem chi tiết
TN
23 tháng 10 2023 lúc 21:00

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

Bình luận (0)
H24
23 tháng 10 2023 lúc 21:04

câu b đâu bạn ?

 

Bình luận (0)
DH
7 tháng 11 2024 lúc 20:55

 

cho A = 1 + 3 + 32 + 33 + ... +  311

 

b) chứng minh A chia hết cho 40

Bình luận (0)
H24
Xem chi tiết
DT
20 tháng 2 2019 lúc 19:45

a,ta có:

a+7b=(a+b)+6b

vì \(\hept{\begin{cases}\left(a+b\right)⋮3\\6b⋮3\end{cases}}\)

=>a+7a chia hết cho 3 với a+b chia hết cho 3

Bình luận (0)
DT
20 tháng 2 2019 lúc 19:47

b,ta có:

2a-7b=2(a+b)-9b

\(\hept{\begin{cases}2\left(a+b\right)⋮3\\-9b⋮3\end{cases}}\)

=>2a-7b chia hết cho 3 với a+b chia hết cho 3

Bình luận (0)
DT
20 tháng 2 2019 lúc 19:50

c, ta có:

13a+19b+2016=13(a+b)+6b+2016

\(\hept{\begin{cases}13 \left(a+b\right)⋮3\\6b⋮3\\2016⋮3\end{cases}}\)

=>13a+19b+2016 chia hết cho 3 với a+b chia hết cho 3

Bình luận (0)
VT
Xem chi tiết
LH
4 tháng 8 2016 lúc 18:24

Để 5a + 3b và 13a + 8b chia hết cho 2016 thì 

5a chia hết cho 2016 và 3b chia hết cho 2016

<=> 13a chia hết 2016 và 8b chia hết 2016

Ta có : 2016 không chia hết cho 5, 

=> Nếu a và b không chia hết cho 2016 thì 5a + 3b không chia hết cho 2016 (a)

Ta có : 2016 không chia hết cho 13

=>  Nếu a và b không chia hết cho 2016 thì 13a + 8b không chia hết cho 2016 (b)

Từ (a) và (b) Ta chứng minh được a và b chia hết cho 2016 

Bình luận (2)
PL
Xem chi tiết
GD

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

Bình luận (0)
NT
24 tháng 7 2023 lúc 11:21

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

Bình luận (0)
GD

\(b,C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\\ =40+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\\ =40.\left(1+3^4+3^8\right)⋮40\)

Bình luận (0)
BA
Xem chi tiết
NQ
24 tháng 1 2018 lúc 21:44

Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)

= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)

Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5

=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)

Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )

=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)

Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (p-1).(p+1) chia hết cho 8

=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)

Từ (1) và (2) => a^5-a chia hết cho 40

Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40

=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40

Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40

Tk mk nha

Bình luận (0)
ND
Xem chi tiết
LD
Xem chi tiết
CL
Xem chi tiết
PD
23 tháng 2 2019 lúc 21:08

1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)

Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)

Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)

b)Hình như đề sai

Bình luận (3)
H24
Xem chi tiết
2U
4 tháng 11 2019 lúc 13:57

Vì \(\hept{\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\Rightarrow\hept{\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\Rightarrow}\hept{\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}}}\)

=> (40a+24b)−(39a+24b)⋮1995

=> 40a+24b−39a−24b⋮1995

=> b⋮1995(1)

=> 8b⋮1995

Mặt khác 13a+8b⋮1995

=> 13a⋮1995Mà (13;1995)=1

=> a⋮1995(2)Từ (1) và (2)

=> a,b⋮1995(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 11 2019 lúc 14:22

bạn giải sai chắc chắn 100% mk đc cô giảng bài này rồi

Bình luận (0)
 Khách vãng lai đã xóa
HK
Xem chi tiết

Vì 5a+3b \(⋮\)1995=>8(5a+3b) ⋮ 1995=> 40a+24b ⋮ 1995     (1)

Vì 13a+8b⋮ 1995=>3(13a+8b)⋮ 1995=>39a+24b⋮ 1995         (2)

từ (1),(2) => 40+24b -39a -24b ⋮ 1995 => a ⋮ 1995

bạn làm tương tự với b nhé

Bình luận (0)
 Khách vãng lai đã xóa