Những câu hỏi liên quan
NP
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 2 2019 lúc 5:50

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

Bình luận (0)
LC
Xem chi tiết
BH
20 tháng 2 2022 lúc 19:48

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)

Bình luận (0)
TN
Xem chi tiết
PM
13 tháng 12 2015 lúc 21:58

có: \(x^2+y^2\ge2xy\left(BDTCauchy\right)\)
\(x^2+z^2\ge2xz\)
\(y^2+z^2\ge2yz\)
Cộng vế với vế \(\Rightarrow x^2+y^2+z^2\ge xy+xz+yz\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+xz+yz\right)\)
\(\Rightarrow\frac{a^2}{3}\ge xy+xz+yz\)
MaxM=a2/3 
Dấu "=" xảy ra <=> x=y=z=1/3a

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 1 2019 lúc 15:30

Chọn đáp án C.

Vì x, y ,z > 0 nên x + y > 0; y + z > 0 và x + z > 0

Ta có:

Trắc nghiệm: Chương 1 Đại Số 9 (nâng cao) - Bài tập Toán lớp 9 chọn lọc có đáp án, lời giải chi tiết

Khi đó

A = x(y + z) + y(x + z) + z(x + y)

= xy + xz + xy + yz + xz + zy = 2(xy + yz + zx) = 2

Bình luận (0)
NK
Xem chi tiết
HN
Xem chi tiết
ML
19 tháng 6 2015 lúc 13:27

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 2 2018 lúc 16:56

Chọn đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 8 2019 lúc 8:39

Chọn đáp án A

 

Do đó, P có thể nhận các giá trị nguyên là 0; -1

 

 

 

STUDY TIP

Trong biểu thức P vai trò của z khác x, y do đó, ta tìm cách rút x, y theo z từ điều kiện ban đầu. Từ đó quy về phương trình ẩn z và tìm điều kiện để phương trình có nghiệm

 

Phương trình (2), (3) là các phương trình mặt phẳng

Hai mặt phẳng này cắt nhau theo giao tuyến d có vecto chỉ phương là 

Phương trình (4) là phương trình mặt cầu (S) có tâm O(0;0;0) bán kính  R = 5

 

X, y, z tồn tại khi và chỉ khi d cắt (S)

 

Do đó P có thể nhận các giá trị nguyên là 0; -1

 

STUDY TIP

Các biểu thức liên hệ giữa x, y, z có dạng phương trình mặt phẳng, mặt cầu. Từ đó giúp ta nghĩ đến việc xét vị trí tương dối giữa mặt cầu, với đường thẳng và mặt phẳng

 

Bình luận (0)