cho x,y,z là các số dương thỏa x+y+z>=12.tìm minP= x/căn y+y/căn z+z/căn z
Mình đang cần gấp nhé
X lớn hơn bằng 0, tìm minP= (x2+2x+17)/2(x-1)Cho x,y,z >0 và x+y+z lớn hơn hoặc bằng 12. Tìm minP= x/ căn y + y/ căn z + z/ căn x
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
Mình đang cần rất gấp nhé
Cho x,y,z là các số thực dương thỏa mãn căn x + căn y - căn z = 0
Chứng minh rằng
1
x+y-z
+1
y+z-x
+1
z+x-y
=0
cho x y z là các số thực dương thỏa mãn x + y + z = 3.Tìm GTLN của A= xy/căn(z2+3) + yz/căn(x2+3) + zx/căn(y2+3)
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)
Cho 3 so x,y,z là dương thỏa mãn x+y+z<=1.Chứng minh rằng:
Căn của x^2+1/y^2+ căn của y^2+1/z^2+ căn của z^2+1/x^2 >=82
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
cho x y z thỏa mãn x+y+z+căn xyz=4 cm căn x(4-y)(4-z) + căn y(4-x)(4-z) +căn z(4-x)(4-y) - căn xyz= 8