Những câu hỏi liên quan
TA
Xem chi tiết
LL
29 tháng 8 2021 lúc 10:02

\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)

Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)

\(ĐTXR\Leftrightarrow x=1\)

Bình luận (1)
VM
Xem chi tiết
VM
3 tháng 5 2023 lúc 12:48

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

Bình luận (0)
NT
11 tháng 5 2023 lúc 14:56

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

Bình luận (0)
GT
Xem chi tiết
DA
Xem chi tiết
HN
Xem chi tiết
NP
Xem chi tiết
TH
Xem chi tiết
NP
Xem chi tiết
HV
18 tháng 12 2018 lúc 16:36

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

Bình luận (0)
NP
Xem chi tiết
H24
18 tháng 12 2018 lúc 19:38

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

Bình luận (0)
NP
18 tháng 12 2018 lúc 20:20

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

Bình luận (0)