Những câu hỏi liên quan
NQ
Xem chi tiết
NL
14 tháng 5 2020 lúc 14:14

a/ \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

b/ \(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z=1\)

c/ BĐT sai

Bình luận (0)
WR
Xem chi tiết
DL
30 tháng 3 2018 lúc 20:30

Trên mạng có nhiều lắm í bn!

Bình luận (0)
PQ
30 tháng 3 2018 lúc 20:37

Giả sử \(x>y>z>t\)

Ta có : 

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x+y+z+t}{x+y+z+t}=1\)

\(\Rightarrow\)\(M>1\)\(\left(1\right)\)

Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\) ) 

\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\) ( cộng tử và mẫu cho t ) 

\(\frac{y}{x+y+t}< \frac{y+z}{z+y+z+t}\) ( cộng tử và mẫu cho z ) 

\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t}\) ( cộng tử và mẫu cho x ) 

\(\frac{t}{x+z+t}< \frac{y+t}{x+y+z+t}\) ( cộng tử và mẫu cho y ) 

\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< M< 2\)

Vậy M không là số tự nhiên với mọi \(x,y,z,t\inℕ\)

Chúc bạn học tốt ~ 

Bình luận (0)
HH
1 tháng 4 2018 lúc 10:40

Giả sử x > y > z > t Ta có :  x + y + z x > x + y + z + t x x + y + t y > x + y + z + t y y + z + t z > x + y + z + t z x + z + t t > x + y + z + t t ⇒M = x + y + z x + x + y + t y + y + z + t z + x + z + t t > x + y + z + t x + y + z + t = 1 ⇒M > 1 1 Lại có : ( phần này áp dụng công thức  b a < b + m a + m b a < 1;a,b,c ∈ ℕ ∗  )  x + y + z x < x + y + z + t x + t  ( cộng tử và mẫu cho t )  x + y + t y < z + y + z + t y + z  ( cộng tử và mẫu cho z )  y + z + t z < x + y + z + t x + z  ( cộng tử và mẫu cho x )  x + z + t t < x + y + z + t y + t  ( cộng tử và mẫu cho y )  ⇒M = x + y + z x + x + y + t y + y + z + t z + x + z + t t < x + y + z + t 2 x + y + z + t = 2

Bình luận (0)
NA
Xem chi tiết
VG
Xem chi tiết
NL
25 tháng 3 2023 lúc 21:54

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
VD
Xem chi tiết
TH
2 tháng 4 2022 lúc 22:17

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

Bình luận (2)
TH
2 tháng 4 2022 lúc 22:52

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.

 

Bình luận (0)
AH
Xem chi tiết
ZZ
2 tháng 9 2019 lúc 20:30

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=15xyz\left(x^2+y^2+z^2\right)\)

Mặt khác:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=-z^5\)

\(\Rightarrow x^5+y^5+z^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=0\)

\(\Rightarrow x^5+y^5+z^5+\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=0\)

\(\Rightarrow x^5+y^5+z^5+\left(x+y\right)\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow x^5+y^5+z^5-5xyz\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(x^2+2xy+y^2\right)+x^2+y^2\right]=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Khi đó:\(6\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)=VT\)

\(\Rightarrowđpcm\)

Bình luận (0)
AH
2 tháng 9 2019 lúc 21:44

zZz Cool Kid zZz mình chưa hiểu lắm

Bn giải rõ ra dc ko

Bình luận (0)
T2
Xem chi tiết
LN
Xem chi tiết
DQ
Xem chi tiết