Cho N=\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\). Chứng minh rằng N là một số nguyên.
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Chứng minh rằng M= \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{2}-\sqrt{3}}\) là một số nguyên
\(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{3}+\sqrt{2}+1-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{1}=1\)là số nguyên
Chứng minh rằng số A = \(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\) là một số nguyên.
Chứng minh rằng:
A = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\) là một số nguyên.
Trả lời:
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=1\)
Chứng minh rằng vối mọi số nguyên dương n lớn hơn 1 ta có: \(\sqrt{2\sqrt{3\sqrt{4....\sqrt{\left(n-1\right)\sqrt{n}}}}}< 3\)
Tui chơi bang bang trao đổi acc không
CHứng minh rằng : \(\frac{a^2+b^2}{2}>=ab^3+a^3b-a^2b^2\)
Chứng mình rằng A:\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là một số nguyên
Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên
Giả sử a = b = 2 thì VT = 4 < VP = 16
Nhiêu đây là thấy đề sai rồi
Chứng minh rằng với mọi số nguyên dương n ta đều có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Xét số hạng tổng quát ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài tập, ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)
Chứng minh \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là một số nguyên với mọi \(n\in N^{\cdot}\)