rút gọn
9^8 . 2^8 -( 18^4 - 1)( 18^4 +1)
rút gọn phân số 1+2+3+4+....+8+9 phần 11+12+.....+18+19
\(\frac{1+2+3+4+...+8+9}{11+12+...+18+19}\)
\(\Rightarrow\frac{\left(1+9\right).9:2}{\left(11+9\right).9:2}=\frac{1+9}{11+19}=\frac{10}{30}=\frac{1}{3}\)
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Rút gọn
a,(x+y)2-(x-y)2
b, (a+b)3+ (a-b)3-2a3
c, 98.28- (184-1)(184+1)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^2-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
c) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-\left(18^8-1\right)=1\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(2xy+2xy\right)\)
\(=4xy\)
a) (x+y)2-(x-y)2
=(x+y+x-y)(x+y-x+y)
=2x.2y=4xy
b) (a+b)3+(a-b)3-2a3
=(a+b+a-b)(a2+2ab+b2-a2+b2+a2-2ab+b2)-2a3
=2a.(a2+3b2)-2a3
=2a3+6ab2-2a3
=6ab2
rút gọn các biểu thức sau
(a+b)2 +( a-b)3-2a3
98*28-(184-1)(184+1)
Rút gọn: 1 1 - 2 - 1 2 - 3 + 1 3 - 4 - 1 4 - 5 + 1 5 - 6 - 1 6 - 7 + 1 7 - 8 - 1 8 - 9
\(\dfrac{1+2+3+...+8+9}{11+12+13+...+18+19}\) rút gọn phân số
M=1+2+3+4+...+911+12+13+...+19=(9+1)9:2(11+19)9:2=45135=13
Rút gọn psố: 2×4+2×4×8+4×8×16+8×18×32 phần 3×3+2×6×8+4×12×16+8×24×32
Rút gọn rồi tính:
a) \(\dfrac{8}{18}+\dfrac{5}{3}\) b) \(\dfrac{8}{24}+\dfrac{4}{48}\) c) \(\dfrac{20}{15}-\dfrac{4}{45}\) d) \(\dfrac{40}{32}-\dfrac{1}{2}\)
a: \(\dfrac{8}{18}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{15}{9}=\dfrac{4+15}{9}=\dfrac{19}{9}\)
b: \(\dfrac{8}{24}+\dfrac{4}{48}=\dfrac{1}{3}+\dfrac{1}{12}=\dfrac{4}{12}+\dfrac{1}{12}=\dfrac{4+1}{12}=\dfrac{5}{12}\)
c: \(\dfrac{20}{15}-\dfrac{4}{45}=\dfrac{4}{3}-\dfrac{4}{45}=\dfrac{60}{45}-\dfrac{4}{45}=\dfrac{60-4}{45}=\dfrac{56}{45}\)
d: \(\dfrac{40}{32}-\dfrac{1}{2}=\dfrac{5}{4}-\dfrac{1}{2}=\dfrac{5-2}{4}=\dfrac{3}{4}\)
Bài 7. Tính nhanh
a/ 498mũ 2
b/ 93. 107
c/ 163 mũ 2+ 74.163 + 37mũ 2
d/ 1995 mũ 2 – 1994.1996
e/ 9 mũ 8.2 mũ 8 – (18mũ 4 – 1)(18 mũ 4+ 1)
f/ 125 mũ 2 - 2. 125. 25 + 25 mũ 2
Bài 8. Rút gọn các biểu thức sau
a/ (x mũ 2+ 3x+ 1)mũ 2 + (3x – 1) mữ 2 – 2(x mũ 2+ 3x+ 1)(3x– 1)
b/ (3x mũ 3+ 3x + 1)(3x mũ 3– 3x +1) – (3xmũ 3+1)mũ 2
c/ (2xmũ2+ 2x + 1)(2xmũ2 – 2x + 1) – (2xmũ 2+ 1)mũ 2
Bài 9. Rút gọn rồi tính giá trị biểu thức
a/ A = (2x + y)mũ 2 - (2x + y) (2x - y)+ y(x - y) vì x= - 2; y= 3.
b/ B = (a - 3b)mũ 2 - (a + 3b)mũ 2 - (a -1)(b -2 ) vì a =1/2; b = -3.
MN GIÚP MIK VS MIK CẦN GẤP
Bài 9:
a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)
\(=3xy-y^2\)
\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)
b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Bài 7:
a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)
b) \(93\cdot107=100^2-7^2=10000-49=9951\)
c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)
d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)
e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1=1\)
f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)
Bài 8:
a) Ta có: \(\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(=x^4+4x^2+4\)
b) Ta có: \(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
c) Ta có: \(\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)