Những câu hỏi liên quan
HN
Xem chi tiết
PL
Xem chi tiết
DD
Xem chi tiết
TY
Xem chi tiết
NT
20 tháng 10 2016 lúc 19:43

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Bình luận (0)
ND
20 tháng 10 2016 lúc 19:56

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

Bình luận (4)
HD
20 tháng 10 2016 lúc 19:53

Gọi a/b=c/d=k(k khác 0)

Ta có:

a=bk

c=dk

VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)

VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)

Từ (1) và (2) suy ra bằng nhau

Bình luận (0)
HN
Xem chi tiết
AH
31 tháng 7 2024 lúc 13:02

Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.

Ta có:

$7=\frac{a^2}{b^2}$

$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$

$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$

$\Rightarrow b\vdots 7$

Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)

Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.

Bình luận (0)
DP
Xem chi tiết
NM
1 tháng 12 2021 lúc 13:53

Hàm số bậc nhất \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m^2+m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\left(2m+1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=3\)

Bình luận (1)
BS
Xem chi tiết
NO
13 tháng 8 2017 lúc 16:22

Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Bình luận (0)
BS
13 tháng 8 2017 lúc 16:28

sai rồi bạn ơi mik làm đc rồi

Bình luận (0)
NM
Xem chi tiết
TM
17 tháng 7 2019 lúc 13:06

1,44224957+2,080083823=3,522333393 \(\in\)I

Bình luận (0)
NM
17 tháng 7 2019 lúc 21:17

Liên quan gì bạn @Tam Mai, chứng minh chứ không phải bấm máy tính

Bình luận (0)
TM
17 tháng 7 2019 lúc 21:18

uh một cách giải ngoài dự đoán của bạn

Bình luận (0)
HA
Xem chi tiết
NH
18 tháng 10 2016 lúc 15:55

trong sách bài tập toán 7 tập 1, soắn 11, bài 115 có bài tương tự đấy bạn

Bình luận (0)