Những câu hỏi liên quan
DT
Xem chi tiết
NM
7 tháng 11 2021 lúc 11:49

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

Bình luận (0)
H24
Xem chi tiết
NM
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

Bình luận (0)
H24
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

Bình luận (0)
ND
6 tháng 1 lúc 13:45

um


Bình luận (0)
LT
Xem chi tiết
LT
12 tháng 12 2017 lúc 17:52
Làm nhanh giup mk với mk đang cần gấp
Bình luận (0)
NT
12 tháng 12 2017 lúc 19:34

\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)

Min=3 khi x=-1

Còn phần cô giáo thì zầy nè

\(\frac{1}{2x^2+4x+5}=\frac{1}{2\left(x^2+2x+\frac{5}{2}\right)}=\frac{1}{2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]}=\frac{1}{2\left(x+1\right)^2+3}\)

muốn \(\frac{1}{2x^2+4x+5}\) lớn nhất thì \(2x^2+4x+5\)nhỏ nhất

\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)

Min=3 khi x=-1

Nếu cảm thấy đúng thì  
Bình luận (0)
NT
12 tháng 12 2017 lúc 20:36

bạn ơ mk ko biết nhưng cho mk hỏi bạn giải đc bài này ko giúp mk đi

Tìm GTLN x2+10x-5

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 2 2018 lúc 16:31

a) A=x^2-2x+7
=x2
-2x+1+6
=(x-1)2+6
vì (x-1)2 ≥ với mọi x nên
(x-1)2+6 ≥ 6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
 =-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2 ≤ 0 nên
-(2x+1)2+1 ≤ 1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2

:D

Bình luận (0)
H24
2 tháng 2 2018 lúc 16:32

Có thể làm theo cách này :

a) A = x^2 - 2x + 7
=> A = x^2 - 2x . 1/2 + (1/2)^2 + 27/4
        = [x^2 - 2x . 1/2 + (1/2)^2] + 27/4
        = (x - 1/2)^2 + 27/4
mà   (x - 1/2)^2  > 0
=> (x - 1/2)^2 + 27/4  > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2

:D

Bình luận (0)
NM
Xem chi tiết
MT
14 tháng 7 2015 lúc 21:33

a) A=x^2-2x+7

=x2-2x+1+6

=(x-1)2+6

vì (x-1)2\(\ge\)với mọi x nên

(x-1)2+6\(\ge\)6

dấu "=" xảy ra khi:

x-1=0

<=>x=1

Vậy GTNN của A là 6 tại x=1

 

b)B=4x-4x^2

 =-4x2+4x-1+1

=-(4x2+4x+1)+1

=-(2x+1)2+1

vì -(2x+1)2\(\le\)0 nên

-(2x+1)2+1\(\le\)1

Dấu "=" xảy ra khi

2x+1=0

<=>x=-1/2

Vậy GTLN của B là 1 tại x=-1/2

Bình luận (0)
TN
14 tháng 7 2015 lúc 21:38

a) A = x2 - 2x + 7

=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4

        = [x2 - 2x . 1/2 + (1/2)2] + 27/4

        = (x - 1/2)2 + 27/4

mà   (x - 1/2)2  > 0

=> (x - 1/2)2 + 27/4  > 27/4

Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2

Bình luận (0)
NN
Xem chi tiết
DP
Xem chi tiết
AH
1 tháng 5 2023 lúc 20:53

Lời giải:
$B=4x^2-4x-3|2x-1|+3=(4x^2-4x+1)-3|2x-1|+2$

$=(2x-1)^2-3|2x-1|+2=|2x-1|^2-3|2x-1|+2$

$=(|2x-1|-1,5)^2+\frac{1}{4}\geq \frac{1}{4}$

Vậy $B_{\min}=\frac{1}{4}$. Giá trị này đạt tại $|2x-1|=1,5$

$\Leftrightarrow x=\frac{5}{4}$ hoặc $x=\frac{-1}{4}$

Bình luận (0)
NC
Xem chi tiết
LD
23 tháng 10 2020 lúc 19:07

A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinA = 8 <=> x = 1

B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x

Dấu "=" xảy ra khi x = -3

=> MinB = -12 <=> x = -3

C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 2

=> MinC = 8 <=> x = 2

D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxD = 11 <=> x = -2

Bình luận (0)
 Khách vãng lai đã xóa
SM
27 tháng 10 2020 lúc 8:38

hello, cần lm j z?

Bình luận (0)
 Khách vãng lai đã xóa
PT
12 tháng 1 2022 lúc 19:39

klkkkkkkkkkujoiyuj

Bình luận (0)
 Khách vãng lai đã xóa
YS
Xem chi tiết
SM
19 tháng 9 2018 lúc 8:42

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

Bình luận (0)