Những câu hỏi liên quan
LN
Xem chi tiết
NT
19 tháng 8 2021 lúc 22:06

1: Ta có: \(\dfrac{3}{x+2}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)

Suy ra: \(3x-6-x+1=2x+4\)

\(\Leftrightarrow2x-5=2x+4\left(vôlý\right)\)

2: Ta có: \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)

Suy ra: \(\left(x-5\right)\left(2x+3\right)-x\left(2x-3\right)=1-6x\)

\(\Leftrightarrow2x^2-7x-15-2x^2+6x+6x-1=0\)

\(\Leftrightarrow5x=16\)

hay \(x=\dfrac{16}{5}\)

Bình luận (0)
LG
Xem chi tiết
TH
28 tháng 4 2023 lúc 9:12

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow x\left(x+8\right)=105\)

\(\Leftrightarrow x^2+8x-105=0\)

\(\Leftrightarrow x^2-7x+15x-105=0\)

\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)

 

Bình luận (0)
LN
Xem chi tiết
NT
19 tháng 8 2021 lúc 21:52

1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)

Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)

\(\Leftrightarrow-3x-12-3+5x-x+4=0\)

\(\Leftrightarrow x=11\left(nhận\right)\)

Bình luận (0)
AH
19 tháng 8 2021 lúc 23:47

2. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)

\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)

Vậy pt vô nghiệm

 

Bình luận (0)
AH
19 tháng 8 2021 lúc 23:49

3. ĐKXĐ: $x\neq \pm \frac{3}{2}$

PT \(\Leftrightarrow \frac{(x-5)(2x+3)-x(2x-3)}{(2x-3)(2x+3)}=\frac{1-6x}{(2x-3)(2x+3)}\)

\(\Rightarrow (x-5)(2x+3)-x(2x-3)=1-6x\)

\(\Leftrightarrow 2x^2-7x-15-2x^2+3x+6x-1=0\)

\(\Leftrightarrow 2x-16=0\Leftrightarrow x=8\) (thỏa mãn)

 

Bình luận (0)
TL
Xem chi tiết
H24
17 tháng 1 2023 lúc 19:50

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

Bình luận (2)
H24
Xem chi tiết
NN
8 tháng 3 2023 lúc 21:42

`8(x-3)(x+1)=8x^2 +11`

`<=>8(x^2 +x-3x-3)-8x^2 -11=0`

`<=>8x^2 +8x-24x-24-8x^2 -11=0`

`<=>-16x-35=0`

`<=>-16x=35`

`<=>x=-35/16`

 

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(x\ne0;x\ne2\right)\\ < =>\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

suy ra

`x^2 +2x-2=x-2`

`<=>x^2 +2x-x-2+2=0`

`<=>x^2 +x=0`

`<=>x(x+1)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ < =>x=-1\)

Bình luận (0)
DM
8 tháng 3 2023 lúc 21:42

\(a,8\left(x-3\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow\left(8x-24\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow8x^2-24x+8x-24-8x^2-11=0\\ \Leftrightarrow-16x-35=0\\ \Leftrightarrow x=\dfrac{-35}{16}\)

Vậy \(x=-\dfrac{35}{16}\)

\(b,đkxđ:x\ne2;x\ne0\)

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}-\dfrac{1}{x}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-2-x+2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

Vậy \(x=-1\)

@ducminh 

Bình luận (0)
NL
Xem chi tiết
H24
13 tháng 4 2022 lúc 21:18

undefined

Bình luận (0)
H24
Xem chi tiết
HP
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

Bình luận (0)
MS
Xem chi tiết
TQ
28 tháng 1 2022 lúc 12:14

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

Bình luận (0)
TQ
28 tháng 1 2022 lúc 12:20

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

Bình luận (0)
TL
Xem chi tiết
NT
3 tháng 3 2022 lúc 9:37

a, đk : x khác 5;-6 

\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm) 

b, đk : x khác 1;3 

\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)

pt vô nghiệm 

Bình luận (0)
H24
3 tháng 3 2022 lúc 9:38

a, đk : x khác 5;-6 

x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61

⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm) 

b, đk : x khác 1;3 

x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)

pt vô nghiệm 

Bình luận (0)
 ILoveMath đã xóa
NT
3 tháng 3 2022 lúc 9:38

a: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>x=0(nhận)

b: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-1-8\)

=>2x-15=-9

=>2x=-6

hay x=-3(nhận)

Bình luận (0)
 ILoveMath đã xóa