Những câu hỏi liên quan
H24
Xem chi tiết
H24
30 tháng 10 2019 lúc 21:44

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\\ \Rightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\\ \Rightarrow a^2cd+b^2cd=abc^2+abd^2\\ \Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\\ \Rightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\\ \Rightarrow\left(ac-bd\right)\left(ad-bc\right)=0\\\Rightarrow \left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
30 tháng 10 2019 lúc 21:52

\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
DM
Xem chi tiết
GV
25 tháng 10 2017 lúc 10:40

Bạn tham khảo ở đây nhé

Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
NT
Xem chi tiết
CC
Xem chi tiết
NQ
19 tháng 11 2017 lúc 21:00

Xét (a^2+c^2).(b^2+d^2)-(ab+cd)^2

 = a^2b^2+c^2b^2+a^2d^2+c^2d^2-a^2b^2-2abcd-c^2d^2

 = b^2c^2+a^2d^2-2abcd = (bc-ad)^2 >= 0 

=> (ab+cd)^2 <= (a^2+c^2).(b^2+d^2)                     ( bđt này còn được gọi là bđt bunhiacopxki )

=> đpcm

Dấu "=" xảy ra <=> bc-ad=0

<=> bc = ad <=> a/b = c/d

k mk nha

Bình luận (0)
H24

Ta khai triển ra có (ad-bc)2>=0 (đúng với mọi abcd)

Dấu "=" xảy ra khi

ad=bc

Bình luận (0)
PT
19 tháng 11 2017 lúc 21:02

Giả sử: \(\left(a^2+c^2\right)\left(b^2+d^2\right)\ge\left(ab+cd\right)^2\)

\(\Leftrightarrow a^2b^2+a^2d^2+c^2b^2+c^2d^2-a^2b^2-2abcd-c^2d^2\ge0\)

\(\Leftrightarrow a^2c^2-2acbd+b^2d^2\ge0\)

\(\Leftrightarrow\left(ac-bd\right)^2\ge0\)đúng với a;b;c;d thuộc R

BĐT này còn gọi là BĐT Bu-nhi-a-cốp-xki

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 11 2016 lúc 22:19

em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122

Bình luận (0)
TD
7 tháng 1 2018 lúc 17:57

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )

TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

Bình luận (0)
PA
Xem chi tiết
MM
Xem chi tiết
PT
5 tháng 7 2015 lúc 9:53

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)

=> \(\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{c^2}{cd}+\frac{d^2}{cd}\)

=> \(\frac{a}{b}+\frac{b}{a}=\frac{c}{d}+\frac{d}{c}\)

 Mình chỉ làm được tới khúc này

Bình luận (0)
PV
11 tháng 5 2019 lúc 10:48

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)



\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

Trường hợp 1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)

                         \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

Từ (3) và (4) suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Trường hợp 2: \(\frac{a+b}{c+d}=\frac{-\left(a-b\right)}{c-d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

                          \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ (5) và (6) suy ra \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)

Bình luận (0)
LN
Xem chi tiết