Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VD
Xem chi tiết
OA
Xem chi tiết
LD
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

Bình luận (1)
LD
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Bình luận (0)
DQ
Xem chi tiết
CA
Xem chi tiết
CA
19 tháng 12 2015 lúc 19:26

nguyễn hồng quân đấy là phim hành động nhé chứ không phải phim hoạt hình nhé bạn !!!

Bình luận (0)
BM
Xem chi tiết
HN
19 tháng 8 2016 lúc 13:25

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

Bình luận (0)
CA
Xem chi tiết
TH
Xem chi tiết
VT
11 tháng 2 2020 lúc 22:36

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 2 2020 lúc 20:52

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
SK
Xem chi tiết
TT
12 tháng 6 2015 lúc 14:29

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

Bình luận (0)
ML
12 tháng 6 2015 lúc 20:02

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Bình luận (0)
SK
2 tháng 3 2017 lúc 20:05

bị đặc đặc cái tên shinichi koudo chú có hình shinichi đâu

Bình luận (0)