CMR: s=1/2^2 -1/2^4 +...+1/2^4n-2+...+1/2^2002-1/2^2004
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR:
S= \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
hxbdsajfvgfchgcvetrfgeffbaw4bcdxrfbwebctfdefvewbdrgbwdgberhgcvergcdfbrbcftvvtgcbeftbckberfdkjuebfcbtuvrvbtkbr
Hoe..>>
Bài này mk gặp rồi nhờ cô giải hộ mà giờ mk quên mất tiêu rồi
Xin lỗi bn nha, mk k thể giúp đc rồi!
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...\frac{1}{2^{2001}}-\frac{1}{2^{2004}}< 0.2\)
\(S=\left(\frac{1}{2.4}+\frac{1}{2.6}+\frac{1}{6.8}+\frac{1}{\left(2n-2\right).2n}\right).\frac{1}{2}\)
\(S=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+....\right)+\frac{1}{2n-2}-\frac{1}{2n}.\frac{1}{2}\)
\(S=\left(\frac{1}{2}-\frac{1}{2n}\right).\frac{1}{2}\)
\(S=\frac{1}{4}-\frac{1}{2n}< 0,2\)
\(S=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+....\left(< 0,2\right)\left(đcmp\right)\)
CMR:\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+..+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(<\frac{1}{2^4}-\frac{1}{2^4}+\frac{1}{2^8}-\frac{1}{2^8}+...+\frac{1}{2^{4n}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}-\frac{1}{2^{2004}}\)=0+0+0+...+0+....+0=0 <0,2
Vậy S<0,2
\(S=\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)-\frac{1}{2^2}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)=\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)\)
\(S<0,2\Leftrightarrow\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)<0,2\Leftrightarrow\frac{1}{2^2}+...+\frac{1}{2^{2002}}<\frac{4}{15}\)
Ta có : \(2P-P=\frac{1}{2}+...+\frac{1}{2^{2001}}-\frac{1}{2^2}-...-\frac{1}{2^{2002}}=\frac{1}{2}-\frac{1}{2^{2002}}\) với \(P=\frac{1}{2^2}+...+\frac{1}{2^{2002}}\)
Thế mà P< 4/15 chịu
CMR : S = \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)< 0,2
CMR
S=1\22-1\24+1\26-1\28+...+1\24n-2-1\24n+1\22002-1\22004 nhỎ Hơn1\5
CMR :
S = \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}<0,2\)
P/S : chtt mình không tích , không pít chtt là cái gì hết á
S = \(...\)
=> \(S.2^2=1-\frac{1}{2^2}+\frac{1}{2^4}-...+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)
=> \(S.4+S=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...-\frac{1}{2^{2004}}\right)\)
=> \(5S=1-\frac{1}{2^{2004}}<1\)
=> \(S<1:5=0,2\left(đpcm\right)\)
Vậy S < 0,2.
CMR: 1:22 _ 1:24+1:26-...+1:24n-2-1:24n+...+1:22002-1:22004<0.2
1. C/m rằng
S = 1/2^2 - 1/2^4 + 1/2^6 - ... + 1/2^4n-2 - 1/2^4n + ... + 1/2^2002 - 1/2^2004 < 0,2
2. C/m rằng
B = 1 - 1/2^2 - 1/3^2 - 1/4^2 - ... - 1/2004^2 > 1/2004
Chứng minh rằng tổng
S=1/2^2 -1/2^4 +1/2^6 - ...........+ 1/2^4n-2 -1/2^4n + ..........+ 1/2^2002 - 1/2^2004 nhỏ hơn 0,2
CMR tổng
S=\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{2^6}-...+\frac{1}{4n-2}-\frac{1}{4n}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0.2\)
Jup mk vs jk