NX

CMR:\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+..+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}

DT
22 tháng 2 2016 lúc 21:37

\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)

\(<\frac{1}{2^4}-\frac{1}{2^4}+\frac{1}{2^8}-\frac{1}{2^8}+...+\frac{1}{2^{4n}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}-\frac{1}{2^{2004}}\)=0+0+0+...+0+....+0=0 <0,2

Vậy S<0,2

Bình luận (0)
H24
22 tháng 2 2016 lúc 21:42

Ảo quá \(\frac{1}{4n-2}<\frac{1}{4n}\)

Bình luận (0)
H24
22 tháng 2 2016 lúc 21:49

\(S=\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)-\frac{1}{2^2}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)=\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)\)

\(S<0,2\Leftrightarrow\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)<0,2\Leftrightarrow\frac{1}{2^2}+...+\frac{1}{2^{2002}}<\frac{4}{15}\)

Ta có : \(2P-P=\frac{1}{2}+...+\frac{1}{2^{2001}}-\frac{1}{2^2}-...-\frac{1}{2^{2002}}=\frac{1}{2}-\frac{1}{2^{2002}}\) với \(P=\frac{1}{2^2}+...+\frac{1}{2^{2002}}\)

Thế mà P< 4/15 chịu

Bình luận (0)

Các câu hỏi tương tự
NX
Xem chi tiết
NX
Xem chi tiết
TG
Xem chi tiết
DA
Xem chi tiết
TG
Xem chi tiết
MA
Xem chi tiết
SG
Xem chi tiết
ES
Xem chi tiết
TG
Xem chi tiết