cho a,b,c là các số thực không âm thỏa mãn : a+b+c=1 .
Chứng minh rằng : ab+bc+ca-3abc \(\ge\)1/4
Cho a,b,c là các số thực không âm thỏa mãn a2+b2+c2+abc=4 .Chứng minh rằng :
\(abc+2\ge ab+bc+ca\ge abc\)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9
Cho các số thực không âm a,b,c thỏa mãn ab + bc + ca =1. Chứng minh rằng a2 +10(b2 + c2 ) ≥ 4
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
Cho a ,b,c là các số thực không âm thỏa mãn a2+b2+c2=1.chứng minh rằng: c/1+bc + b/1+ca + a/1+bc >= 1
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3abc. Chứng minh rằng :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left[\frac{a^4}{\left(ab+1\right)\left(ac+1\right)}+\frac{b^4}{\left(bc+1\right)\left(ab+1\right)}+\frac{c^4}{\left(ca+1\right)\left(bc+1\right)}\right]\ge\frac{27}{4}\)
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
Cho các số thực không âm a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng (a + b)(b + c)(c + a) > 8
Cho các số thực a,b,c không âm thỏa mãn \(a+b+c=3\)
Chứng minh rằng: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
i don not no
câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu
câu này ai giải đc cho tui 10000
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)