cho 2 số dương a,b và a=5-b tìm gtnn của tổng : \(P=\frac{1}{a}+\frac{1}{b}\)
Cho a,b,c là 3 số dương có tổng a+b+c=1 tìm GTNN của \(\frac{1}{^{a^2}}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta co:
\(1=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
Dat \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\ge\frac{3}{\frac{1}{9}}=27\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(P_{min}=27\)khi \(a=b=c=\frac{1}{3}\)
Theo yêu cầu của bạn cách kh́ác :))
Ta co:
\(\frac{1}{a^2}+9\ge\frac{6}{a}\)
Tuong tu:\(\frac{1}{b^2}+9\ge\frac{6}{b};\frac{1}{c^2}+9\ge\frac{6}{c}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+27\ge6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{54}{a+b+c}=54\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge54-27=27\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(P_{min}=27\)khi \(a=b=c=\frac{1}{3}\)
cho a và b là 2 số thục dương và thỏa mãn a+b<1. Tìm GTNN của BT \(A=\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
ta có :
\(A=\frac{a^2}{1-a}+a+\frac{b^2}{1-b}+b+\frac{1}{a+b}=\frac{a}{1-a}+\frac{b}{1-b}+\frac{1}{a+b}\)
\(A=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\)
mà : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\)
Vậy \(A\ge\frac{9}{2}-2=\frac{5}{2}\)
dấu bằng xảy ra khi : \(1-a=1-b=a+b\Leftrightarrow a=b=\frac{1}{3}\)
Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:
Bài 1,cho a,b,c là các số dương . Tìm GTNN của :
a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)
b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)
Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:
\(A=\frac{x+y}{xyz}\)
b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của
\(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)
Bài 4: a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)
b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
Cho hai số dương a và b thoả mãn (a + b)2 + a + b = 2 + 4ab. Tìm GTNN của P = \(\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}.\)
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Cho hai số dương a và b thỏa mãn \(a+b\le1\).Tìm GTNN của:
\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)
\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)
\(P=\frac{1}{a^2+b^2+1}+\frac{\frac{1}{9}}{2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{a^2+b^2+1+2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{3}{4}\right)^2}{\left(a+b\right)^2+1}+\frac{16}{9\left(a+b\right)^2}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{1+1}+\frac{16}{9}=\frac{8}{3}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
Cho a,b,c là ba số dương và a ≥ max{ b, c }
Tìm GTNN của biểu thức \(P=\frac{a}{b}+2\sqrt{1+\frac{b}{c}}+3\sqrt[3]{1+\frac{c}{a}}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)