Những câu hỏi liên quan
H24
Xem chi tiết
AH
27 tháng 8 2023 lúc 21:43

Lời giải:

PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$

$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$

$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$

$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.

Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$

$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$

Bình luận (0)
HM
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TH
20 tháng 2 2019 lúc 18:50

a) ĐKXĐ: a + b + c, a + b, b + c, c + a \(\ne\) 0.

Áp d

Bình luận (0)
TH
20 tháng 2 2019 lúc 18:50

Xl ấn nhầm nha

Bình luận (0)
H24
Xem chi tiết
HM
Xem chi tiết
NM
17 tháng 11 2021 lúc 20:48

\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)

Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)

\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

Bình luận (0)
YT
Xem chi tiết
KN
22 tháng 11 2017 lúc 18:47

Hỏi đáp ToánHỏi đáp Toán

Bình luận (0)
ND
22 tháng 11 2017 lúc 19:50

chưa tìm kĩ đã hỏi haizzzzzzzz

Bình luận (4)
DY
Xem chi tiết
N2
4 tháng 1 2018 lúc 20:06

\(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}=1\)

\(\Leftrightarrow\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{c+a-x}{b}+\dfrac{4x}{a+b+c}-1=0\)

\(\Leftrightarrow(\dfrac{a+b-x}{c}+1)+(\dfrac{b+c-x}{a}+1)+(\dfrac{c+a-x}{b}+1)+(\dfrac{4x}{a+b+c}-4)=0\)\(\Leftrightarrow\dfrac{a+b+c-x}{c}+\dfrac{a+b+c-x}{a}+\dfrac{a+b+c-x}{b}+\dfrac{-4\left(a+b+c-x\right)}{a+b+c}=0\)\(\Leftrightarrow\left(a+b+c-x\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}\right)=0\)

Hiển nhiên: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{4}{a+b+c}>0\left(a,b,c>0\right)\)

\(\Rightarrow x=a+b+c\)

Bình luận (0)
HK
Xem chi tiết
LG
10 tháng 12 2017 lúc 11:42

Bài 1:

\(B=\dfrac{4\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{\left(x^2-25\right)}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)

\(=\dfrac{4\left(x+3\right)^2}{\left(3x+5-2x\right)\left(3x+5+2x\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{\left(4x+15-x\right)\left(4x+15+x\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{5\left(x-5\right)\left(x+1\right)}-\dfrac{3\left(x+3\right)\left(x+1\right)}{15\left(x+5\right)\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{x+5}{5\left(x+1\right)}-\dfrac{x+1}{5\left(x+5\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+5\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4\left(x^2+6x+9\right)-\left(x^2+10x+25\right)-\left(x^2+2x+1\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4x^2+24x+36-x^2-10x-25-x^2-2x-1}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2x^2+12x+10}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+6x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+5x+x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x+5\right)\left(x+1\right)}{5\left(x+5\right)\left(x+1\right)}=\dfrac{2}{5}\)

Bình luận (5)
PL
10 tháng 12 2017 lúc 18:46

Bài 2.

Sửa đề

a) \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)

Giải

Ta sẽ phân tích vế phải

VP = \(\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)

VP = \(\dfrac{a\left(x^2-4\right)+bx\left(x+2\right)+cx\left(x-2\right)}{x\left(x^2-4\right)}\)

VP = \(\dfrac{ax^2-4a+bx^2+2bx+cx^2-2cx}{x\left(x^2-4\right)}\)

VP = \(\dfrac{x^2\left(a+b+c\right)+2x\left(b-c\right)-4a}{x\left(x^2-4\right)}\)

Tương tự , ta cũng sẽ phân tích VT

VT = \(\dfrac{2x.5-4}{x\left(x^2-4\right)}\)

Đồng nhất hai VT và VP , ta có :

\(x^2\left(a+b+c\right)+2x\left(b-c\right)-4a=2.5x-4\)

* a + b + c = 0 => 1 + c + 5 + c = 0 => 2c = - 6 => c = - 3

* b - c = 5 => b = c + 5 => b = - 3 + 5 => b = 2

* a = 1

Vậy , a = 1 ; b = 2 ; c = -3

b) Ta sẽ phân tích VP

VP = \(\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)

VP = \(\dfrac{a\left(x^2+x+1\right)+\left(bx+c\right)\left(x-1\right)}{x^3-1}\)

VP = \(\dfrac{ax^2+ax+a+bx^2-bx+cx-c}{x^3-1}\)

VP = \(\dfrac{x^2\left(a+b\right)+x\left(a-b+c\right)+a-c}{x^3-1}\)

Đồng nhất VP và VT , ta được :

\(x^2\left(a+b\right)+x\left(a-b+c\right)+a-c=1\)

* a + b = 0 => a = - b => b = \(-\dfrac{1}{3}\)

* a - b + c = 0 => a + a + a - 1 = 0 => 3a = 1 => a = \(\dfrac{1}{3}\)

* a - c = 1 => c = a - 1 => c = \(\dfrac{1}{3}\) - 1 = \(-\dfrac{2}{3}\)

Vậy , a = \(\dfrac{1}{3}\) ; b = \(-\dfrac{1}{3}\); c = \(-\dfrac{2}{3}\)

Bài 1 bạn Giang làm rồi thì thôi nhé

Bình luận (9)
HK
10 tháng 12 2017 lúc 11:21

Kiểm tra giùm mk câu a bài 2 nha!!! ĐỀ BÀI!!!

Bình luận (0)