Tìm các giá trị của \(x,y\)thỏa mãn:
\(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
1/tìm các giá trị cua x và y thỏa mãn \(\left|2x-27\right|^{2007}\)+\(\left(3y+10\right)^{2008}\)=0
2/tìm x biết \(2.\left|5x-3\right|-2x=14\)
1,
Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)
\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)
Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
2,
TH1: \(x\ge\frac{3}{5}\)
<=> 2(5x-3)-2x=14
<=> 10x-6-2x=14
<=>8x-6=14
<=>8x=20
<=>x=5/2 (thỏa mãn)
TH2: x < 3/5
<=> 2(3-5x)-2x=14
<=>6-10x-2x=14
<=>6-12x=14
<=>12x=-8
<=>x=-2/3 (thỏa mãn)
Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)
1 x=13,5 ;y=-10/3
2 kết quả x =-2/3
thực hiện phép tính: \(\frac{4,5\left[47,375-\left(26\frac{1}{3}-18.0,75\right).0,24:0,88\right]}{17,81:1,37-23\frac{2}{3}:1\frac{5}{6}}\)
tìm các giá trị của x,y thỏa mãn : giá trị tuyệt đối của( \(2x-27^{2007}\) ) \(+\left(3Y+10\right)^{2008}=0\)
GIÚP MK VS. MK CẦN GẤP
thực hiện phép tính bằng -4,8172906
còn lại dễ bạn tự làm nhé!!!
hỏi luffy toán học ấy
b) Ta có: \(\hept{\begin{cases}\left|2x-27\right|^{2007}\ge0\left(\forall x\right)\\\left(3y+10\right)^{2008}\ge0\left(\forall y\right)\end{cases}}\)
Để \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2017}=0\\\left(3y+10\right)^{2008}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}=13,5\\y=-\frac{10}{3}\end{cases}}\)
Cho các số \(x,y\) thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2x+2=0\). Tính giá trị của biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)
Ta có:
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay giá trị x và y vào M ta có:
\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)
\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)
\(M=1\)
Tìm các giá trị của x;y thỏa mãn: /2x-27/2007 + (3y+10)2008=0
Tìm giá trị x, y thỏa mãn: \(^{\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0}\)
Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\); \(\left(3y+10\right)^{2012}\ge0\)
=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Tìm các giá trị của x và y thỏa mãn :|2x-27|2007+(3y+10)2008 = 0
Vì \(\left|2x-27\right|^{2007}\ge0\) với mọi x; \(\left(3y+10\right)^{2008}\ge0\) với mọi x.
Do đó: \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\) với mọi x.
Theo đề bài, ta có:
\(\left|2x-27\right|^{2007}=0\Rightarrow2x-27=0\Rightarrow x=....\)
\(\left(3y+10\right)^{2008}=0\Rightarrow3y+10=0\Rightarrow y=.....\)
tìm các giá trị của x và y thỏa mãn : | 2x-27|2007+(3y+10)2008 = 0
Vì /2x-27/^2007 > 0 với mọi x; (3y+10)^2008 > 0 với mọi x
Do đó:/2x-27/^2007 + (3y+10)^2008 > 0 với mọi x(mấy câu này mình thêm vào để bạn hiểu hơn thôi)
Theo đề bài thì ta có:/2x-27/^2007+(3y+10)^2008 =0
=>/2x-27/^2007 =0 =>2x-27=0 =>x=....
(3y+10)^2008 =0 =>3y+10=0 =>y=.....
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
HELP ME !!!!!!!!! Tớ đang cần sự giúp đỡ.
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
HELP ME !!!!!!!!! Tớ đang cần sự giúp đỡ.