chứng tỏ rằng một số chia cho 36 dư 24 luôn chia hết cho 12
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Khi chia một số a cho 12 ta được số dư là 9 chứng tỏ rằng a chia hết cho 3 nhưng không chia hết cho 4
Ta có
\(a=12k+9\) (k là số nguyên dương)
\(\Rightarrow a=3\left(4k+3\right)⋮3\)
Ta có
\(a=12k+8+1=4\left(3k+2\right)+1\) => a:4 dư 1 nên a không chia hết cho 4
Do a chia 12 dư 9 nên a = 12k + 9 \(\left(k\in N\right)\)
Ta có:
\(12k⋮3\)
\(9⋮3\)
\(\Rightarrow a=\left(12k+9\right)⋮3\)
Do \(12k⋮4\)
\(9⋮̸4\)
\(\Rightarrow a=\left(12k+9\right)⋮̸4\)
Chứng minh rằng: Trong hai số tự nhiên liên tiếp , luôn có một số chia hết cho 2
Khi chia số tự nhiên b cho 24 được số dư lầ 10 a, hỏi b có chia hết cho 2 không? chia hết cho 4 không?
cho p là số nguyên tố lớn hơn 3, chứng tỏ rằng số A=(p-1).(p+2017) luôn chia hết cho 24
Chứng tỏ rằng:
a,Chứng tỏ rằng:Tích của hai số chẵn liên tiếp luôn chia hết cho 8
b,Trong 5 số tự nhiên bất kì ao giờ cũng có hai số chia hết cho 4 có cùng số dư
cTìm số tự nhiên n lớn nhất có 3 chữ số và nhỏ hơn 200,chia cho 5 dư 3,chia cho 7 dư 6
khi chia số tự nhiên a cho 18 ta được số dư là 12 chứng tỏ rằng a chia hết cho 6, không chia hết cho 9
1 khi chia số tự nhiên a cho 24 ta được số dư là 10 hỏi số a có chia hết cho 2 không có chia hết cho 4 không
2 chứng tỏ rằng
trong hai số tự nhiên liên tiếp có một số chia hết cho 2
trong một số tự nhiên liên tiếp có một số chia hết cho 3
1) Gọi thương của a khi chia cho 24 là: x
Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)
=> a chi hết cho 2
\(a=24x+10\)
Nhận thấy: \(24x\)\(⋮\)\(4\)nhưng \(10\)không chia hết cho \(4\)
=> a không chia hết cho \(4\)
2)
a) Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)
nếu: \(a=2k\)thì \(a⋮2\)
nếu: \(a=2k+1\)thì: \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)
Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2
b) ktra lại đề
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
10 . 12 Chứng tỏ rằng nếu hai số chia hết cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5
đặt 2 số đó là :
5x + y và 5z + y
ta có hiệu của chúng là : 5x + y - ( 5z + y ) = 5 ( x - z ) chia hết cho 5
Khi chia số tự nhiên a cho 18 ta được số dư là 12. Chứng tỏ rằng a chia hết cho 6; a không chia hết cho 9
a chia 18 dư 12 => a = 18k+12. Ta có:
18k chia hết cho 6 (Vì 18 chia hết cho 6)
12 chia hết cho 6
=> 18k+12 chia hết cho 6
=> a chia hết cho 6(đpcm)
18k chia hết cho 9 (Vì 18 chia hết cho 9)
12 chia 9 dư 3
=> 18k+12 chia 9 dư 3
=> 18k+12 không chia hết cho 9
=> a không chia hết cho 9(đpcm)
=>