Những câu hỏi liên quan
H24
Xem chi tiết
DN
Xem chi tiết
NS
5 tháng 1 2017 lúc 20:42

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

Bình luận (0)
NA
8 tháng 10 2017 lúc 21:15

xl mk thấy tên bn ghê wa

Bình luận (0)
LT
4 tháng 9 2021 lúc 11:15
Thằng xl nghe tên mà ức chế vãi
Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
OM
13 tháng 2 2022 lúc 20:55

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Bình luận (0)
TN
Xem chi tiết
PT
24 tháng 1 2021 lúc 21:38

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

Bình luận (11)
TP
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
YK
15 tháng 11 2014 lúc 21:32

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

Bình luận (0)
YK
15 tháng 11 2014 lúc 21:52

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

Bình luận (0)
NT
4 tháng 12 2014 lúc 19:56

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

 
Bình luận (0)
DT
Xem chi tiết
NM
2 tháng 11 2023 lúc 8:23

Ta có

\(a=12k+9\) (k là số nguyên dương)

\(\Rightarrow a=3\left(4k+3\right)⋮3\)

Ta có

\(a=12k+8+1=4\left(3k+2\right)+1\) => a:4 dư 1 nên a không chia hết cho 4

Bình luận (0)
KL
2 tháng 11 2023 lúc 8:49

Do a chia 12 dư 9 nên a = 12k + 9 \(\left(k\in N\right)\)

Ta có:

\(12k⋮3\)

\(9⋮3\)

\(\Rightarrow a=\left(12k+9\right)⋮3\)

Do \(12k⋮4\)

\(9⋮̸4\)

\(\Rightarrow a=\left(12k+9\right)⋮̸4\)

Bình luận (0)
NM
Xem chi tiết
DH
23 tháng 12 2024 lúc 15:22

HHehe

Bình luận (0)