Những câu hỏi liên quan
NA
Xem chi tiết
TA
Xem chi tiết
AN
12 tháng 2 2017 lúc 8:55

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

Bình luận (0)
AN
12 tháng 2 2017 lúc 9:01

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

Bình luận (0)
AN
12 tháng 2 2017 lúc 9:15

c/ \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\3x+3y+2+2\sqrt{9xy+3x+3y+1}=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)thì ta có

\(\hept{\begin{cases}2a-\sqrt{b}=3\\3a+2\sqrt{9b+3a+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=4a^2-12a+9\\3a+2\sqrt{36a^2-105a+82}=14\end{cases}}\)

Tiếp tục chuyển vế pt dưới rồi bình phương 2 vế tìm được a có a suy ra b từ đây tìm được x, y

Bình luận (0)
PK
Xem chi tiết
CH
20 tháng 9 2017 lúc 9:34

Do \(x^2+y^2+xy=1\Rightarrow x-y=\left(x-y\right)\left(x^2+y^2+xy\right)=x^3-y^3\)

Tức là ta có hệ mới \(\hept{\begin{cases}x^3-y^3=x-y\\x^3+y^3=x+3y\end{cases}}\)

Trừ từng vế của phương trình dưới cho phương trình trên, ta có \(2y^3=4y\Rightarrow2y\left(y^2-2\right)=0\Rightarrow\orbr{\begin{cases}y=0\\y=\sqrt{2}\vee y=-\sqrt{2}\end{cases}}\)

Nếu y = 0 thì \(x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Nếu \(y=\sqrt{2}\) thì \(x^2+2+\sqrt{2}x=1\Rightarrow x^2+\sqrt{2}x+1=0\) (Vô nghiệm)

Nếu \(y=-\sqrt{2}\) thì \(x^2+2-\sqrt{2}x=1\Rightarrow x^2-\sqrt{2}x+1=0\) (Vô nghiệm)

Tóm lại phương trình có 2 nghiệm \(\left(1;0\right)\) và \(\left(-1;0\right).\)

Bình luận (0)
TA
Xem chi tiết
NA
Xem chi tiết
LF
18 tháng 1 2017 lúc 18:55

\(\left\{\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\left(1\right)\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\left(2\right)\end{matrix}\right.\)

Ta có:

\( (2)\Leftrightarrow xy\left ( x^2+y^2 \right )=x^2+2xy+y^2 \\\ \Leftrightarrow\left (xy-1 \right )\left ( x^2+y^2-2 \right )=0\)

*)TH1: \(xy=1\) thay vào \((1)\) ta được:

\(5x-4y+3y^3-2(x+y)=0\)

\(\Leftrightarrow y^4-2y^2+1=0\)\(\Leftrightarrow y=\pm 1\Rightarrow x=\pm 1\)

*)TH2: \(x^2+y^2=2\).Thay vào \((1)\) ta được:

\(5x^2y-4xy^2+3y^3-(x^2+y^2)(x+y)=0\)

\(\Leftrightarrow 2y^3+4x^2y-5xy^2-x^3=0\)

\(\Leftrightarrow (y^3-x^3)+(y^3+4x^2y-5xy^2)=0\)

\(\Leftrightarrow (y-x)^2(2y-x)=0\)

Với \(x=y\) ta tìm được 2 nghiệm \((x;y)=(1;1); (-1;-1)\)

Với \(x=2y\) thay vào \(x^2+y^2=2\) ta tìm được \(y=\pm \sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)

Vậy nghiệm của hệ phương trình đã cho là :\((x;y)=(1;1); (-1;-1); \left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right); \left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right) \)

Bình luận (0)
LM
Xem chi tiết
LM
4 tháng 8 2019 lúc 15:52

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

Bình luận (0)
LM
Xem chi tiết
LM
5 tháng 8 2019 lúc 8:19

MN ƠI GIÚP E MAI E ĐI HOK RỒ

Bình luận (0)
LM
5 tháng 8 2019 lúc 8:28

GIÚP E MN OEWI

Bình luận (0)
NV
Xem chi tiết
LV
9 tháng 5 2020 lúc 12:15

bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà

Bình luận (0)
 Khách vãng lai đã xóa
HD
9 tháng 5 2020 lúc 14:02

Trả lời :

Bn Lê Thanh Vân bn y ở đâu ra ??

- Hok tốt !

^_^

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NN
16 tháng 1 2018 lúc 21:05

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

Bình luận (0)
NN
16 tháng 1 2018 lúc 20:58

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

Bình luận (0)
NN
16 tháng 1 2018 lúc 21:04

2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

Bình luận (0)