Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NA

Giải hpt

\(\begin{cases}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{cases}\)

LF
18 tháng 1 2017 lúc 18:55

\(\left\{\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\left(1\right)\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\left(2\right)\end{matrix}\right.\)

Ta có:

\( (2)\Leftrightarrow xy\left ( x^2+y^2 \right )=x^2+2xy+y^2 \\\ \Leftrightarrow\left (xy-1 \right )\left ( x^2+y^2-2 \right )=0\)

*)TH1: \(xy=1\) thay vào \((1)\) ta được:

\(5x-4y+3y^3-2(x+y)=0\)

\(\Leftrightarrow y^4-2y^2+1=0\)\(\Leftrightarrow y=\pm 1\Rightarrow x=\pm 1\)

*)TH2: \(x^2+y^2=2\).Thay vào \((1)\) ta được:

\(5x^2y-4xy^2+3y^3-(x^2+y^2)(x+y)=0\)

\(\Leftrightarrow 2y^3+4x^2y-5xy^2-x^3=0\)

\(\Leftrightarrow (y^3-x^3)+(y^3+4x^2y-5xy^2)=0\)

\(\Leftrightarrow (y-x)^2(2y-x)=0\)

Với \(x=y\) ta tìm được 2 nghiệm \((x;y)=(1;1); (-1;-1)\)

Với \(x=2y\) thay vào \(x^2+y^2=2\) ta tìm được \(y=\pm \sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)

Vậy nghiệm của hệ phương trình đã cho là :\((x;y)=(1;1); (-1;-1); \left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right); \left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right) \)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
PA
Xem chi tiết
LL
Xem chi tiết
PH
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết