Những câu hỏi liên quan
NL
Xem chi tiết
NL
Xem chi tiết
NM
15 tháng 9 2021 lúc 15:50

\(a,\left\{{}\begin{matrix}AC=AH\left(GT\right)\\AB.chung\\\widehat{CAB}=\widehat{BAH}\left(=90^0\right)\end{matrix}\right.\Rightarrow\Delta ACB=\Delta AHB\left(c.g.c\right)\)

\(b,\left\{{}\begin{matrix}\widehat{ACB}=\widehat{CBK}\left(so.le.trong\right)\\\widehat{ABC}=\widehat{BCK}\left(so.le.trong\right)\\BC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta KCB\left(g.c.g\right)\Rightarrow AC=BK\left(2.cạnh.tương.ứng\right)\)

\(c,CH=AC+AH=2AC=2AB=BM\\ \left\{{}\begin{matrix}CK//AB\\AB\perp AC\end{matrix}\right.\Rightarrow CK\perp AC\Rightarrow\widehat{ACK}=90^0\\ \left\{{}\begin{matrix}BK//AC\\AC\perp AB\end{matrix}\right.\Rightarrow KB\perp AB\Rightarrow\widehat{ABK}=90^0\\ \left\{{}\begin{matrix}\widehat{ACK}=\widehat{ABK}\left(=90^0\right)\\CH=BM\left(cm.trên\right)\\AC=BK\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta CHK=\Delta BMK\left(c.g.c\right)\)

\(d,\Delta CHK=\Delta BMK\left(cm.trên\right)\\ \Rightarrow\widehat{CKH}=\widehat{BKM}\Rightarrow\widehat{CKH}+\widehat{HKB}=\widehat{BKM}+\widehat{HKB}\\ \Rightarrow\widehat{CKB}=\widehat{HKM}\\ \Rightarrow\widehat{BAC}=\widehat{HKM}\left(\Delta ABC=\Delta KCB.nên.\widehat{CKB}=\widehat{BAC}\right)\\ \Rightarrow\widehat{HKM}=90^0\Rightarrow HK\perp KM\)

Bình luận (1)
N2
Xem chi tiết
NL
Xem chi tiết
TX
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
7 tháng 9 2016 lúc 20:57

Bạn cố chụp đi

Bình luận (2)
TC
Xem chi tiết
TC
1 tháng 12 2019 lúc 20:17

GIải hộ mình bài 4 câu a nhé <3

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 12 2019 lúc 20:17

không biết bó tay

Bình luận (0)
 Khách vãng lai đã xóa
NQ
1 tháng 12 2019 lúc 20:18

 jhuyk;gggp-tg7

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TH
1 tháng 10 2021 lúc 13:28

tam giác ABM và tam giác KBM có
BK=BA
BM là cạnh chung
BM là phân giác góc B = > góc ABM = góc KBM
=> tam giác ABM = tam giác KBM ( c.g.c)
 

Bình luận (2)
NT
1 tháng 10 2021 lúc 15:01

b: Ta có: ΔABM=ΔKBM

nên \(\widehat{BAM}=\widehat{BKM}=90^0\)

Xét ΔAME vuông tại A và ΔKMC vuông tại K có

MA=MK

\(\widehat{AME}=\widehat{KMC}\)

Do đó: ΔAME=ΔKMC

Suy ra: ME=MC

Bình luận (1)
NM
1 tháng 10 2021 lúc 15:46

\(a,\left\{{}\begin{matrix}\widehat{ABM}=\widehat{KBM}\left(t/c.phân.giác\right)\\AB=BK\left(gt\right)\\BM.chung\end{matrix}\right.\Rightarrow\Delta ABM=\Delta KBM\left(c.g.c\right)\\ b,\Delta ABM=\Delta KBM\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{MKB}=90^0\\MA=MK\end{matrix}\right.\\ \left\{{}\begin{matrix}\widehat{MAE}=\widehat{MKC}\left(=90^0\right)\\MA=MK\\\widehat{AME}=\widehat{KMC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta KMC\left(cgv-gn\right)\\ \Rightarrow ME=MC\)

\(c,\Delta BEC\) có CA là đường cao \(\left(CA\perp BE\right)\), EK là đường cao \(\left(EK\perp BC\right)\), EK cắt CA tại M nên M là trực tâm

Do đó BM là đường cao thứ 3

Mà \(M\in BI\) nên BI là đường cao thứ 3 của tam giác BEC

\(\Rightarrow BI\perp EC\)

\(d,\) Vì \(AB=BK\) nên tam giác ABK cân tại B

\(\Rightarrow\widehat{BAK}=\dfrac{180^0-\widehat{ABK}}{2}\left(1\right)\)

Ta có \(\left\{{}\begin{matrix}AB=BK\\AE=CK\end{matrix}\right.\Rightarrow AB+AE=BK+KC\Rightarrow BE=BC\)

Do đó tam giác BEC cân tại B

\(\Rightarrow\widehat{BEC}=\dfrac{180^0-\widehat{ABK}}{2}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{BAK}=\widehat{BEC}\)

Mà 2 góc này ở vị trí đồng vị nên \(AK//EC\)

\(\Rightarrow AK\perp BI\left(EC\perp BI\right)\) hay \(AK\perp MQ\left(Q\in BI;M\in BI\right)\)

Xét tam giác AQK có KH là đường cao \(\left(KH\perp AQ\right)\), QM là đường cao \(\left(AK\perp QM\right)\) và KH cắt QM tại M nên M là trực tâm

Do đó AM là đường cao thứ 3 hay \(AM\perp QK\)

Mà \(AM\perp PK\left(gt\right)\)

Nên PK trùng QK hay 3 điểm K,P,Q thẳng hàng

Bình luận (1)