Những câu hỏi liên quan
VA
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
DV
27 tháng 9 2015 lúc 20:59

Ta có :

\(A=\frac{2012-x}{6-x}=\frac{-\left(x-2012\right)}{-\left(x-6\right)}=\frac{-x+2012}{-x+6}=\frac{-x+6+2006}{-x+6}=1+\frac{2006}{-x+6}\)

A có GTLN <=> -x + 6 là số dương nhỏ nhất

<=> -x + 6 = 1 <=> -x = -5 <=> x = 5

Khi đó \(A=1+\frac{2006}{1}=1+2006=2007\) có GTLN tại x = 5

Bình luận (0)
NL
Xem chi tiết
MX
2 tháng 5 2016 lúc 11:38

\(B=\frac{4}{\left|x-5\right|+2012}\) có GTLN

Ta thấy: |x - 5| \(\ge\)0 <=> |x - 5| + 2012 \(\ge\)2012

Nên B = \(\frac{4}{\left|x-5\right|+2012}\le\frac{4}{2012}=\frac{1}{503}\)

Vậy GTLN của B là \(\frac{1}{503}\) khi và chỉ khi |x - 5| = 0 < = > x = 5

 

Bình luận (0)
PK
2 tháng 5 2016 lúc 11:42

Để B đạt GTLN thì \(\frac{4}{\left|x-5\right|+2012}\) phải đạt GTLN

=> \(\frac{4}{\left|x-5\right|+2012}\) phải là số nguyên dương lớn nhất có thể

\(\Rightarrow\left|x-5\right|+2012\) phải đạt GTNN

Ta có:

\(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+2012\ge2012\)

Dấu "=" xảy ra <=> x - 5 = 0

                       <=> x = 5

Khi đó, ta đc:

\(B=\frac{4}{2012}=\frac{1}{503}\)

Vậy B đạt GTLN là \(\frac{1}{503}\Leftrightarrow x=5\)

Bình luận (0)
HA
Xem chi tiết
PV
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:00

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

Bình luận (0)
NL
Xem chi tiết
NT
2 tháng 5 2016 lúc 11:18

Nhận xét:

/x-5/ \(\ge0\) với mọi x \(\in\) Z, dấu = xảy ra <=> x=5

/x-5/+2012\(\ge2012\) với mọi x \(\in Z\), dấu = xảy ra <=> x=5

=> 4/(/x-5)+2012)\(\le\) 4/2012=1/503 với mọi x thuộ Z, dấu = xảy ra <=> x=5

Vậy Max B=1/503 <=>x=5

Bình luận (0)
VT
Xem chi tiết
LD
9 tháng 11 2018 lúc 12:38

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất 

=> x - 1 lớn nhất 

=> x là số dương vô cùng đề sai nhá

Bình luận (0)
KA
Xem chi tiết
DH
15 tháng 2 2017 lúc 16:45

\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)

Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN

Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5

Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5

Bình luận (0)
UN
15 tháng 2 2017 lúc 16:35

x=5;A=2001

tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu

Bình luận (0)