Tìm số dư trong phép chia \(7^{2005}\) cho 10.
1,tìm số dư của 1994^2005:7
2,cmr :6^1001-1 và 6^1001+1 đều chia hết cho7
3,tìm số dư trong phép chia 1532^5-1:9
4,tìm số dư trong phép chia 3^2003:13
5,tìm số dư trong phép chia 7.5^2n+12.6^n:19 (n thuộc N)
Giải bằng phép đồng dư
1. Tìm số dư khi chia 19942005 cho 7
2.Chứng minh:
A = 61000 - 1 chia hết cho 7 và B = 61001 + 1 chia hết cho 7
3. Tìm số dư trong phép chia 15325 - 1 cho 9
4. Chứng minh rằng: 7 . 52n + 12 . 6n chia hết cho 19 ( Với mọi n thuộc N)
5.Tìm số dư trong phép chia:
a) 32016 cho 13
b) 570 + 750 cho 7
6. Chứng minh rằng :
a) 22002 - 4 chia hết cho 31
b) 22225555 + 55552222 chia hết cho 7
7. Tìm số dư trong phép chia:
a) 776776 + 777777 +778778 cho 3 và cho 5
b)32005 + 42005 cho 11 và cho 13
Tìm số dư của phép chia : 2005^2005 cho 11
\(\frac{2005}{2005}\)=1 nên 1:11 = 0.0909090909...
mình đoán vậy
Tìm dư trong phép chia: \(2005^{2005}\)cho 11
Ta có : \(2005=12.167+1\)
\(\Rightarrow2005^{2005}=\left(11.182+3\right)^{2005}\equiv3^{2005}\left(mol11\right)\)
Ta có : \(3^{2005}=9^{1002}.3=\left(11-2\right)^{1002}.3\equiv2^{1002}.3\left(mod11\right)\)
Ta có : \(2^{1002}.2=32^{200}.4.2=\left(3.11-1\right)^{200}.8\equiv8\left(mod11\right)\)
\(\Rightarrow2005^{2005}\equiv8\left(mod11\right)\) hay \(2005^{2005}\) chia 11 dư 8
Ko bt đúng ko ; mình mới hok đồng dư thức . nếu ko đúng mn vào góp ý sửa sai cho mình nhá
Tìm số dư trong phép chia sau:
32005 + 42005 cho 11 và 13
cho A=1944\(^{2005}\)
a,tìm số dư trong phép chia A cho 7
b,tìm chữ số tận cùng của A
c,tìm 2 cs tận cùng của A
a) Dư 2
b) 4
c) chịu :>>>
Xin like nha bạn. Thx bạn
TÌM SỐ DƯ CỦA PHÉP CHIA : 2005 2005 CHO 11
tìm số dư trong phép chia 5^2010+7^10 cho 12
\(5^2\equiv1\left(mod12\right)\Rightarrow5^{2010}\equiv1\left(mod12\right)< 1>.\)
\(7^2\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)< 2>.\)
\(Từ< 1>và< 2>\Rightarrow5^{2010}+7^{10}\equiv2\left(mod12\right).\)
\(\Rightarrow5^{2010}+7^{10}:12dư2.\)
Vậy \(5^{2010}+7^{10}:12dư2\)
a,Tìm số dư trong phép chia 3^2021 cho 13
b,tìm số dư trong phép chia 2008^2008 cho 7
a,Tìm số dư trong phép chia 3^2021 cho 13
b,tìm số dư trong phép chia 2008^2008 cho 7
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.