Pt nghiện nguyên
\(x^2+y^2+z^2=x^2y^2\)
tìm nghiện nguyên pt x^4+2x^2+6=y^2-y
Tìm nghiệm nguyên PT: \(x^2+y^2+z^2=x^2y^2\)
x2+y2+z2=x2y2
x2+y2+z2=0<=>x2y2=0
<=> \(\orbr{\begin{cases}x^2=0\\y^2=0\end{cases}}\)
Vậy nghiệm của PT =0
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
giải pt nghiện sau \(2^x+7=y^2\)
Giải phương trình nghiệm nguyên
Hướng dẫn:
Xét \(x< 0\)\(\Rightarrow2^x\notin Z\left(vôlý\right)\)
Xét \(x=0\)....
Xét \(x=1\Rightarrow...\)
Xét \(x\ge2\Rightarrow2^x⋮4\)
\(\Rightarrow\left(2^x+7\right)\equiv7\equiv3\left(mod4\right)\)
\(\Rightarrow y^2\equiv3\left(mod4\right)\)(vô lý)
...
TOÁN 7 ĐÂY!!
Giải pt nghiệm nguyên:
a)\(x^4-y^4+z^4+2x^2z^2+3x^2+4x^2+1=0\)
b) \(x^2y^2-x^2-8y^2=2xy\)
1)Cho x, y thỏa mãn \(y\left(x+y\right)\ne0\)và\(x^2-xy=2y^2\)Tính \(A=\frac{3x-y}{x+y}\)
2)Tìm a,b sao cho đa thức f(x)=ax+bx2+10x-4 chia hết cho đa thức g(x)=x2+x-2
3)Tìm số nguyên a sao cho a4 + 4 là số nguyên tố
4)Giải pt \(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\)
5)Giải pt\(\frac{x^2+2x+1}{x^2-x+1}-\frac{x^2-2x+1}{x^2+x+1}=\frac{20}{7}\)
6)Cho các số dương x, y, z thỏa mãn x2+y2+z2=1
Cmr\(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Tìm x,y,z nguyên dương thoả (x^2+y^2)/x^2y^2 + 2/z^2 = 1
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}=1\)
Xét \(x\ge y\ge z\)
\(\Rightarrow1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}\le\frac{4}{z^2}\)
\(\Rightarrow z^2\le4\Rightarrow z\le2\)
\(\Rightarrow z=1;2\)
Làm tiếp sẽ ra
Giải pt nghiệm nguyên: \(x^2y+1=x^2+2xy+2x+y\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
cmr pt sau vô nghiệm,với x,y,nguyên dương : x2+x=y2+2y
x2+x=y2+2y=>x2+x+1=(y+1)2
=>x2+x+1 là chính phương
Mà x2<x2+x+1<(x+1)2
=> pt vô nghiệm
Đây chỉ là mình viết vắn tắt thôi, bạn tự thêm vào cho đầy đủ nhé