Những câu hỏi liên quan
H24
Xem chi tiết
DT
1 tháng 6 2021 lúc 20:37

(a-b)(b-c)(c-a) = (a+b)(b+c)(c+a)                                                                 <=>  \(-b^2c-ac^2+bc^2-a^2b+ab^2+a^2c\) = \(2abc+a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\)

<=> 2\(\left(a^2b+b^2c+c^2a+abc\right)=0\)

<=> \(a^2b+b^2c+c^2a+abc=0\)

Bình luận (0)
HD
Xem chi tiết
H24
4 tháng 3 2020 lúc 14:58

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

Bình luận (0)
 Khách vãng lai đã xóa
2U
4 tháng 3 2020 lúc 15:04

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
EC
25 tháng 7 2020 lúc 22:25

Từ 2a + b + c = 0 <=> a + a + b + c = 0 <=> a + c = -(a + b)

Ta có: VT = 2a3 + b3 + c3 = (a3  + b3) + (a3 + c3)

= (a + b)(a2 - ab + b2) + (a + c)(a2 - ac + c2)

= (a + b)(a2 + 2ab + b2) - 3ab(a + b) + (a + c)(a2 + 2ac + c2) - 3ac(a + c)

= (a + b)3 - 3ab(a + b) + (a + c)3 - 3ac(a + c)

= (a + b)3 - (a + b)3 - 3ab(a + b) + 3ac(a + b)

= -3a(a + b)(b - c) = 3a(a + b)(c - b) = VP

=> VT = VP => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TP
1 tháng 6 2021 lúc 20:54

Cho (a-b)(b-c)(c-a) = (a+b)(b+c)(c+a) .Chứng minh a^2b + b^2c+ c^2a+ abc=0 - H

Bình luận (0)
 Khách vãng lai đã xóa
NL
1 tháng 6 2021 lúc 22:09

Ta có:\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left(a^2c-ac^2+bc^2-b^2c+ab^2-a^2b\right)-\left(2abc+ac^2+a^2c+b^2c+bc^2+a^2b+ab^2\right)=0\)

\(\Leftrightarrow a^2c-ac^2+bc^2-b^2c+ab^2-a^2b-2abc-ac^2-a^2c-b^2c-bc^2-a^2b-ab^2=0\)

\(\Leftrightarrow-2a^2b-2b^2c-2ac^2-2abc=0\)

\(\Leftrightarrow-2\left(a^2b+b^2c+c^2a+abc\right)=0\)

\(\Leftrightarrow a^2b+b^2c+c^2a+abc=0\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 9 2021 lúc 23:18

\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)

\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:

\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)

\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)

\(\Rightarrow VT\ge2.2=4\)

\(\RightarrowĐPCM\)

Bình luận (0)