Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NP
Xem chi tiết
CT
Xem chi tiết
NT
Xem chi tiết
LN
11 tháng 4 2018 lúc 14:18

b, Ta có: a.b=ƯCLN(a,b) . BCNN(a,b)=2400

                   =ƯCLN(a,b) . 120 = 2400

         => ƯCLN(a,b)= 2400 : 120=20

  Đặt a=20n ; b=20m ; (n,m)=1

Ta có: a.b=20n . 20m=2400

           => n.m=2400:(20.20)= 6

Lập bảng: 

   n

  1

6

2

3

   m

 6

1

3

2

   a

20

120

40

60

   b

120

20

60

40

Bình luận (0)
TG
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 7 2017 lúc 11:58

a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n

Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3

Với m = 1, n = 6 thì a = 6, b = 36

Với m = 2, n = 3 thì a = 12, b = 18

Vậy (a;b) là (6;36); (12;18)

b, Vì p là số nguyên tố nên ta xét các trường hợp của p

Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).

Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).

Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với kN*.

Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).

Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).

Kết luận. p = 3

Bình luận (0)
CT
Xem chi tiết
ND
5 tháng 11 2016 lúc 21:22

Do \(ab+1>3\)

Nên \(ab+1\) là số lẻ

Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn

Suy ra \(a=2\) hoặc \(b=2\)

+) Khi \(a=2\)

Nếu \(b\) chia \(3\)\(1\) thì \(7a+b=14+b\) chia hết cho \(3\) (Loại) Nếu \(b\) chia \(3\) \(2\) thì \(ab+1=2b+1\) chia hết cho \(3\) (Loại) Vậy \(b\)chia hết cho \(3\)
Suy ra: \(b=3\)
+) Khi \(b=2\)
Cũng xét tương tự bạn nhé!
Các cặp số \(\left(3;2\right)\) 
Bình luận (1)
TT
Xem chi tiết
Xem chi tiết

trả lời nhanh mình tk cho

Bình luận (0)