Tìm số ab, biết a>b và a+b, a.b là số nguyên tố
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho số ab, biết a>b và a+b, a.b là số nguyên tố, tìm ab ???
TÌM SỐ HOÀN CHỈNH N BIẾT N= A.B VÀ A,B LÀ SỐ NGUYÊN TỐ
1.Chứng minh rằng:
a,14n+3 và 21n+4(n là số tự nhiên) là 2 số nguyên tố cùng nhau
b,Tìm a,b biết rằng a.b=2400;BCNN(a,b)=120
b, Ta có: a.b=ƯCLN(a,b) . BCNN(a,b)=2400
=ƯCLN(a,b) . 120 = 2400
=> ƯCLN(a,b)= 2400 : 120=20
Đặt a=20n ; b=20m ; (n,m)=1
Ta có: a.b=20n . 20m=2400
=> n.m=2400:(20.20)= 6
Lập bảng:
n | 1 | 6 | 2 | 3 |
m | 6 | 1 | 3 | 2 |
a | 20 | 120 | 40 | 60 |
b | 120 | 20 | 60 | 40 |
Cho 2 chữ số a,b. Biết a và là 2 số nguyên tố cùng nhau và tích của a.b là 120.Tìm a và b
chứng minh a.b, a+b là hai số nguyên tố cùng nhau biết a,b là hai số nguyên tố cùng nhau
a, Tìm hai số tự nhiên (a;b) biết: ab = 216 và ƯCLN(a;b) = 6; a < b
b, Tìm số nguyên tố p sao cho p+4 và p+8 cũng là các số nguyên tố
a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n
Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3
Với m = 1, n = 6 thì a = 6, b = 36
Với m = 2, n = 3 thì a = 12, b = 18
Vậy (a;b) là (6;36); (12;18)
b, Vì p là số nguyên tố nên ta xét các trường hợp của p
Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).
Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).
Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với k ∈ N*.
Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).
Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).
Kết luận. p = 3
Tìm a; b; c là số nguyên tố biết : 7a+b và ab+1 cùng là số nguyên tố.
Do \(ab+1>3\)
Nên \(ab+1\) là số lẻ
Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn
Suy ra \(a=2\) hoặc \(b=2\)
+) Khi \(a=2\)
Nếu \(b\) chia \(3\) dư \(1\) thì \(7a+b=14+b\) chia hết cho \(3\) (Loại) Nếu \(b\) chia \(3\) dư \(2\) thì \(ab+1=2b+1\) chia hết cho \(3\) (Loại) Vậy \(b\)chia hết cho \(3\)Tìm tất cả các cặp số nguyên tố (a,b)mà a-b và a.b-b đều là số chính phương.
Mong mn giúp em ạ!
tìm các số tự nhiên a,b biết\(\frac{a^3+b^3}{2}\)là số nguyên tố và\(a^3+b^3=\left(a+b\right)^2.\left(a^2-a.b+b^2\right)\)
trả lời nhanh mình tk cho