Những câu hỏi liên quan
NT
Xem chi tiết
NT
11 tháng 5 2017 lúc 12:12

Bài 2: 

  Đặt   \(a=3+x\)và   \(b=3+y\)thì    \(x,y\ge0\). Ta có :  \(a+b=6+\left(x+y\right)\).

Ta cần chứng minh   \(x+y\ge1\)

Ví dụ   \(x+y< 1\)thì  \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)

\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)

Điều này ngược với  giả thiết ở đề bài   \(ầ^2+b^2\ge25\)

Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)

tk mk nka !!!

Bình luận (0)
ND
Xem chi tiết
PH
8 tháng 8 2018 lúc 19:24

a,b,c phải dương thì đề bài mới đúng.

Ta có: 

       \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)

\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)

\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)

Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)

Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

Chúc bạn học tốt.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 8 2018 lúc 16:48

a) Các số chia hết cho 5 là: 35; 660; 3000; 945.

b) Các số không chia hết cho 5 là: 8; 57; 4674; 5553.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 2 2019 lúc 16:43

a) Các số chia hết cho 5 là: 35; 660; 3000; 945.

b) Các số không chia hết cho 5 là: 8; 57; 4674; 5553.

Bình luận (0)
DH
Xem chi tiết
TT
26 tháng 8 2015 lúc 20:31

Theo bất đẳng thức Cô-Si ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)

\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\)   (ĐPCM)

Bình luận (0)
PP
Xem chi tiết
SG
7 tháng 5 2018 lúc 21:46

a+b+c+ab+bc+ca=6abc \(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)

Đặt \(A=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

Ta có: \(\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)

CMTT: \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ca}\)

Ta có: \(\left(\dfrac{1}{a}-1\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+1\ge\dfrac{2}{a}\)

CMTT: \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)

\(3A+3\ge2.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2.6=12\)

<=> A + 1 \(\ge4\Leftrightarrow A\ge3\) (đpcm)

Bình luận (0)
PP
7 tháng 5 2018 lúc 21:30

Ace Legona giúp tao mày

Bình luận (5)
PD
Xem chi tiết
KS
6 tháng 10 2019 lúc 16:35

 a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
NT
Xem chi tiết
GL
4 tháng 8 2019 lúc 22:48

Ta có 

\(\left(a^2+2\right)\left(b^2+2\right)=\left(a^2+1\right)\left(b^2+1\right)+a^2+b^2+3\ge\left(a+b\right)^2+\frac{\left(a+b\right)^2}{2}+3=\frac{3}{2}\left[\left(a+b\right)^2+2\right]\)

\(\Rightarrow VT\ge\frac{3}{2}\left[\left(a+b\right)^2.c^2+4+2\left(a+b\right)^2+2c^2\right]\)

           \(\ge\frac{3}{2}\left[4\left(a+b\right)c+2\left(a+b\right)^2+2c^2\right]=VP\)

=> ĐPCM

Bình luận (0)
GL
4 tháng 8 2019 lúc 22:54

Dấu "=" xảy ra khi 

\(a=b=c=\frac{\pm1}{\sqrt{2}}\)

Đề PBC 2015-2016 nè

Bình luận (0)
PP
Xem chi tiết
TN
8 tháng 5 2018 lúc 17:16

Bài này đăng nhiều rồi bạn vào câu hỏi tương tự tìm

Bình luận (0)
PC
8 tháng 5 2018 lúc 22:12

Sử dụng kĩ thuật Cauchy ngược dấu

Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\) 

Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)

               \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\) 

\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)