Những câu hỏi liên quan
HA
Xem chi tiết
FT
26 tháng 2 2016 lúc 22:40

Có : 22011969 đồng dư 111969 =1 modun 3
11969220 đồng dư 269220=1617305 đồng dư 117305 modun 3.
69220119 chia hết cho 3
=> Tổng ba số ko chia hết cho 3
mà 102 chia hết cho 3.

Bình luận (0)
TT
Xem chi tiết
LL
Xem chi tiết
NK
31 tháng 12 2015 lúc 22:26

Giả sử A chia hết cho 102

=>A chia hết cho 3(*)

Nhưng 220 chia 3 dư 1

=>\(220^{11969}\) chia 3 dư 1(1)

119 chia 3 dư 2

=>\(119^2\)chia 3 dư 1

=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)

69 chia hết cho 3

=>69^220119 cũng chia hết cho 3(3)

Từ (1),(2)và (3)

=>A chia 3 dư 2

Mâu thuẫn với (*)

=>SAI ĐỀ bạn à

Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

Bình luận (0)
LL
3 tháng 1 2016 lúc 16:35

ủa??? Mình xem lời giải thấy đúng mà bạn. Sử dụng mod casio ý.

Bình luận (0)
MD
19 tháng 8 2016 lúc 20:30

mod casio là gì vậy bạn

Bình luận (0)
NH
Xem chi tiết
HQ
1 tháng 5 2017 lúc 21:51

Giải:

\(102=2.3.17\)

Ta có:

\(220\equiv0\left(mod2\right)\) nên \(220^{11969}\equiv0\left(mod2\right)\)

\(119\equiv1\left(mod2\right)\) nên \(119^{69220}\equiv1\left(mod2\right)\)

\(69\equiv-1\left(mod2\right)\) nên \(69^{220119}\equiv-1\left(mod2\right)\)

\(\Rightarrow A\equiv0\left(mod2\right)\) Hay \(A⋮2\)

Tương tự ta cũng có: \(\left\{{}\begin{matrix}A⋮3\\A⋮17\end{matrix}\right.\)

\(\left(2;3;17\right)=1\Rightarrow A⋮2.3.17=102\)

Vậy \(A=220^{11969}+119^{69220}+69^{220119}⋮102\) (Đpcm)

Bình luận (1)
TT
Xem chi tiết
H24
5 tháng 12 2016 lúc 11:10

ko sai

Bình luận (0)
DA
27 tháng 4 2017 lúc 15:31

sai đề mất rồi

Bình luận (0)
PT
16 tháng 2 2018 lúc 13:52

sai đề

Bình luận (0)
NT
Xem chi tiết
SL
9 tháng 4 2016 lúc 8:57

102

Toán lớp 7Lũy thừaChia hết và chia có dư

Trần Thị Loan  Quản lý 15/08/2015 lúc 22:15

102 = 2.3.17

+) Chứng minh A chia hết cho 2

$220^{119^{69}}=\left(....0\right)$22011969=(....0)

$69^{220}$69220 lẻ => $119^{69^{220}}=\left(....9\right)$11969220=(....9)

220119 tận cùng là 0 => kết qỉa là số chẵn => $69^{220^{119}}=\left(....1\right)$69220119=(....1)

=> A có tận cùng là chữ số 0 => A chia hết cho 2      (1)

+) A chia hết cho 3

220 đồng dư với 1 (mod 3) => $220^{119^{69}}$22011969 đồng dư với 1 mod 3

119 đồng dư với -1 mod 3 => $119^{69^{220}}$11969220 đồng dư với $\left(-1\right)^{69^{220}}=-1$(−1)69220=−1 (mod 3)

69 chia hết cho 3 nên $69^{220^{119}}$69220119 chia hết cho 3  hay $69^{220^{119}}$69220119 đồng dư với 0 (mod 3)

=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3      (2)

+) A chia hết cho 17

220 đồng dư với (-1) mod 3 =>  $220^{119^{69}}$22011969 đồng dư với $\left(-1\right)^{119^{69}}=-1$

Bình luận (0)
LA
Xem chi tiết
BL
Xem chi tiết
TT
1 tháng 12 2015 lúc 9:01

220=0 (mod 2) nen 22011969 =0 (mod 2)

119=1 (mod2) nen 11969220=1 (mod2)

69=-1 (mod2) nen 69220119=-1 9mod2)

Vay A=0 (mod2) hay A:2

Tuong tu : A chia het cho 3

va A chia het cho 7 

Vi 2;3;17 la cac so nguyen to 

=> A chia het cho 2.3.7=102

lik e nhe

Bình luận (0)
LA
Xem chi tiết
NT
10 tháng 7 2017 lúc 20:01

đề phải là \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}⋮102\)

Bình luận (0)