Tính \(-1-\left(\frac{1}{10}\right)-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\)
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)
Tính
\(D=\frac{-1}{10}-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}-\frac{1}{1000000}\)
Tính
B=\(\frac{-1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
Ta có : \(B=\frac{-1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
\(\Rightarrow B=-\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\frac{1}{100000}\right)\)
Đặt \(A=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\frac{1}{100000}\)
\(\Rightarrow10A=1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}\)
\(\Rightarrow10A-A=1-\frac{1}{100000}\)
\(\Rightarrow9A=\frac{99999}{100000}\)
\(\Rightarrow A=\frac{99999}{100000}.\frac{1}{9}=\frac{11111}{100000}\)
=> B = \(-\frac{11111}{100000}\)
Tính
\(A=-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
\(A=\frac{-1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
\(\Rightarrow A=-\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\frac{1}{100000}\right)\)
\(\Rightarrow A=-\left(\frac{10000}{100000}+\frac{1000}{100000}+\frac{100}{100000}+\frac{10}{100000}+\frac{1}{100000}\right)\)
\(\Rightarrow A=-\left(\frac{10000+1000+100+10+1}{100000}\right)\)
\(\Rightarrow A=-\left(\frac{11111}{100000}\right)\)
\(\Rightarrow A=\frac{-11111}{100000}\)
tính A=\(-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}-\frac{1}{1000000}\)
Bài 1:
a,A=\(\left(-1\right)^{2n}\times\left(-1\right)^n\times\left(-1\right)^{n+1},n\in N\)N
b,B=\(\left(10000-1^2\right)\times\left(10000-2^2\right)\times\left(10000-3^2\right)...\left(10000-10000^2\right)\)
c,C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\times\left(\frac{1}{125}-\frac{1}{2^3}\right)....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d,D=\(1999.^{\left(1000-1^2\right).\left(1000-2^2\right)....\left(1000-10^3\right)}\)
giải nhanh giúp mk nha.À đúng rồi bạn nào có link đáp án đề lớp 7 của thầy NGUYỄN CAO CƯỜNG( tuyển sinh 247) thì chp mk với, tất cả đề cô mk ra đều có trong đó cả!!MK cần gấp lắm
bạn ơi cho mk hỏi 1 bài làm giúp mk đc ko vậy ạ
2n là số chẳn , n và n+1 n chẳn thì n+1 là lẻ và ngược lại nên A = -1
Câu a,
2n là số chẵn nên \((-1)^{2n}=1\)
n là số lẽ thì n+1 là chẵn và ngược lại nên \((-1)^n.(-1)^{n+1}1.\left(-1\right)=-1\)
Vậy nên 1 X (- 1) = -1
Tính hợp lí
a,
\(A=\left(-\frac{5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right).\left(\frac{837}{22}-\frac{865}{22}\right)\)
b, \(B=1-\frac{1}{1+\frac{2}{3-\frac{4}{5-7}}}\)
c, \(C=-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
\(\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right).......\left(1+\frac{2012}{100}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right).....\left(1+\frac{1000}{2012}\right)}\)
\(-1-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\)
\(-1-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\)
\(=-\frac{10000}{10000}-\frac{1000}{10000}-\frac{100}{10000}-\frac{10}{10000}-\frac{1}{10000}\)
\(=\frac{-10000-1000-100-10-1}{10000}\)
\(=-\frac{11111}{10000}=-1,1111\)
\(=-\left(1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}\right)\)
\(=-\left(\frac{10000}{10000}+\frac{1000}{10000}+\frac{100}{10000}+\frac{1}{10000}\right)\)
\(=-\left(\frac{10000+1000+100+10+1}{10000}\right)\)
\(=-\left(\frac{11111}{10000}\right)\)
Vậy.....