Những câu hỏi liên quan
TS
Xem chi tiết
TS
8 tháng 3 2022 lúc 17:15

mn ghi giúp em chi tiết bài giải nx ạ! 

Bình luận (0)
KK
8 tháng 3 2022 lúc 20:25

undefined

Bình luận (0)
KK
8 tháng 3 2022 lúc 20:25

đây nha

Bình luận (1)
NV
Xem chi tiết
AP
Xem chi tiết
NT
31 tháng 5 2022 lúc 22:59

Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)

\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)

=>A là số hữu tỉ (ĐPCM)

Bình luận (0)
KA
Xem chi tiết
CH
28 tháng 10 2017 lúc 1:30

bạn chứng minh bài toán tổng quát :  \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)rồi áp dụng vào giải bài này nhé 

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 3 2022 lúc 21:42

Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

Cộng vế với vế ta được 

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)

mà 39/20 < 8/7 => T < 8/7 

Bình luận (0)
YN
Xem chi tiết
H24
1 tháng 5 2018 lúc 17:54

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2018^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2018.2019}\)

=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=\dfrac{1}{2}-\dfrac{1}{2019}< 1\)

Vậy A < 1.

Bình luận (0)
NS
Xem chi tiết
MS
18 tháng 3 2018 lúc 20:43

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

Bình luận (0)
H24
Xem chi tiết
NH
22 tháng 4 2023 lúc 13:07

\(x:3\dfrac{1}{15}\) - \(\dfrac{3}{4}\) = 2\(\dfrac{1}{4}\)

\(x\)\(\dfrac{46}{15}\) - \(\dfrac{3}{4}\) = \(\dfrac{9}{4}\)

\(x\) : \(\dfrac{46}{15}\)      = \(\dfrac{9}{4}\) + \(\dfrac{3}{4}\)

\(x\) : \(\dfrac{46}{15}\)     = \(\dfrac{12}{4}\)

\(x\) : \(\dfrac{46}{15}\)     = \(3\)

\(x\)              = 3 \(\times\) \(\dfrac{46}{15}\)

\(x\)             = \(\dfrac{46}{5}\)

Bình luận (0)
NH
22 tháng 4 2023 lúc 13:11

\(x\) \(\times\) 3\(\dfrac{2}{3}\) - 1\(\dfrac{2}{3}\) = 2\(\dfrac{1}{3}\)

\(x\) \(\times\) \(\dfrac{11}{3}\) - \(\dfrac{5}{3}\) = \(\dfrac{7}{3}\)

\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{7}{3}\) + \(\dfrac{5}{3}\)

\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{12}{3}\)

\(x\times\dfrac{11}{3}\) = 4

\(x\)          = 4 : \(\dfrac{11}{3}\)

\(x\)         = \(\dfrac{12}{11}\)

Bình luận (0)
SO
Xem chi tiết

Giải:

\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\) 

Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

Ta có:

\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\) 

\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\) 

\(=\dfrac{n}{2^n}\) 

  \(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)

\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\) 

\(S=2-\dfrac{2019}{2017}\)  

\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\) 

Hay \(S< 2\)

Bình luận (1)