biết tg 'apha' =\(\dfrac{5}{12}\)
a, tính sin a ,cos a
b, biết cos a =0.4.tìm tg a, cotg a, sin a
Bài 1 : Cho biết sin=0,6. Tính cos, tg và cotg
Bài 2:
1. Chứng minh rằng
a) tg2 a+1=\(\dfrac{1}{cos^2a}\)
b) cotg2 a+1=\(\dfrac{1}{sin^2a}\)
c) cos4 a-sin4 a=2cos2 a-1
2. Áp dụng: tính sin, cos a, cotg a, biết tg a=2
Bài 3: Biết tg=4/3. Tính sin, cos, cotg
bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)
\(\Rightarrow cosa=\pm\dfrac{4}{5}\)
\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)
bài 2)
ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)
b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)
c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)
\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)
ý 2 :
ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)
ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)
\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)
vậy ............................................................................
bài 3 bạn tự luyện tập như bài 2 cho quen nha :)
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
1 Cho Tg = 3 . Tính Cos a + Sin a trên Cos a - Sin a ( phân số nha )
2. Cho Sin = \(\frac{2}{3}\). Tính Cos a, Tg a, Cotg a
3. Cho tam giác ABC vuông A, Đường cao AH biết AB = 10, BH = 5 . C/M Tg B = 3 X Tg C
4. So Sánh
a) Tg 28 độ và Sin 28 độ
B) Tg 32 độ và Cos 58 độ
1. Ta có \(\tan a=3\Rightarrow\frac{\sin a}{\cos a}=3\Rightarrow\sin a=3\cos a\)
Vậy \(\frac{\cos a+\sin a}{\cos a-\sin a}=\frac{\cos a+3\cos a}{\cos a-3\cos a}=\frac{4\cos a}{-2\cos a}=-2\)
2.Ta có \(\sin^2a+\cos^2a=1\Rightarrow\cos^2a=1-\sin^2a=1-\frac{4}{9}=\frac{5}{9}\)
\(\Rightarrow\orbr{\begin{cases}\cos a=\frac{\sqrt{5}}{3}\\\cos a=\frac{-\sqrt{5}}{3}\end{cases}}\)
Với \(\cos a=\frac{\sqrt{5}}{3}\Rightarrow\tan a=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\Rightarrow\cot a=\frac{1}{\tan a}=\frac{\sqrt{5}}{2}\)
Với \(\cos a=\frac{-\sqrt{5}}{2}\Rightarrow\tan a=\frac{-2\sqrt{5}}{5}\Rightarrow\cot a=-\frac{\sqrt{5}}{2}\)
3.
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BH.BC\Leftrightarrow10^2=5.BC\Rightarrow BC=20\left(cm\right)\)
Theo định lí Pitago thì \(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
Ta có \(\tan B=\frac{AC}{AB}=\frac{10\sqrt{3}}{10}=\sqrt{3};\tan C=\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)
Vậy \(\tan B=3\tan C\)
\(Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?\)
So sánh:
a ) sin 20 ° v à sin 70 ° b ) cos 25 ° v à cos 63 ° 15 ' c ) tg 73 ° 20 ' v à tg 45 ° d ) cotg 2 ° v à cotg 37 ° 40 '
a) Vì 20 ° < 70 ° n ê n sin 20 ° < sin 70 ° (góc tăng, sin tăng)
b) Vì 25 ° < 63 ° 15 ' n ê n cos 25 ° > cos 63 ° 15 ' (góc tăng, cos giảm)
c) Vì 73 ° 20 ' > 45 ° n ê n t g 73 ° 20 ' > t g 45 ° (góc tăng, tg tăng)
d) Vì 2 ° < 37 ° 40 ' n ê n c o t g 2 ° > c o t g 37 ° 40 ' (góc tăng, cotg giảm )
Cho góc nhọn a, biết sin a = 2/3 . Không tính số đo góc, hãy tính cos a ;tg a; cotg a
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\)
\(\cot=\frac{1}{\tan}=\frac{1}{\frac{2\sqrt{5}}{5}}=\frac{\sqrt{5}}{2}\)
1 . biết sin a = 5/13 . tính cos a , tg a , cotg a
bài 2 : CMR : sin A / 2 <= a / 2 căn của bc
Tính theo công thức lượng giác là sẽ ra
Tìm đẳng thức đúng:
A. tg α = tg β B. tg α = cotg β
C. tg α = sin β D. tg α = cos β
Tính:
a)Tính A=\(sin^225^o\)+\(sin^265^o\)-tg\(35^o\)+cotg\(55^o\)-\(\dfrac{cotg32^o}{tg58^o}\)
b)Không dùng máy tính hãy tính cos\(30^o\)
b: \(\cos30^0=\dfrac{\sqrt{3}}{2}\)