Những câu hỏi liên quan
HL
Xem chi tiết
NT
23 tháng 3 2017 lúc 22:01

Để mình giúp nha

\(A=|x-2013|+|x-2014|+|x-2015|\)

\(=|x-2013|+|2014-x|+2015-x|\)

\(\ge|x-2013+2015-x|+|2014-x|\)

\(\ge2+|2014-x|=2\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Bình luận (0)
CT
23 tháng 3 2017 lúc 21:52

Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|

Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2

Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)

|x−2014|\(\ge0\)

Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)

|x−2013|+|x−2014|+|x−2015|\(\ge\)2

Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014

Bình luận (0)
H24
Xem chi tiết
TK
29 tháng 12 2017 lúc 16:20

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 7 2019 lúc 8:36

\(|x+3|+|2-x|\ge|x+3+2-x|=5\Rightarrow B_{min}=5\)

Bình luận (0)
ZZ
12 tháng 7 2019 lúc 8:37

\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(B_{min}=5\Leftrightarrow x=0\)

Bình luận (0)
KN
12 tháng 7 2019 lúc 8:41

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\),ta được:

\(\left|x+3\right|+\left|2-x\right|\ge\left|\left(x+3\right)+\left(2-x\right)\right|=\left|5\right|=5\)

Vậy \(B_{min}=5\)\(\Leftrightarrow\left|x+3\right|+\left|2-x\right|=5\)

Xét \(x+3=0\Leftrightarrow x=-3;x+3>0\Leftrightarrow x>-3;x+3< 0\Leftrightarrow x< -3\)

      \(2-x=0\Leftrightarrow x=2;2-x>0\Leftrightarrow x< 2;2-x< 0\Leftrightarrow x>2\)

Ta có bảng xét dấu các đa thức x + 3 và 2 - x dưới đây:

     \(-3\)                                                       \(2\)
\(x+3\)    -    \(0\)                         +                             |                   +
\(2-x\)    -     |                               -                                \(0\)           +

*Xét khoảng x < -3 thì \(\left(-x-3\right)+\left(x-2\right)=5\Leftrightarrow-5=5\)(vô lí)

*Xét khoảng \(-3\le x\le2\)thì \(\left(x+3\right)+\left(x-2\right)=5\Leftrightarrow2x=4\Leftrightarrow x=2\)(giá trị này thuộc khoảng đang xét)

*Xét khoảng x > 2 thì \(\left(x+3\right)+\left(2-x\right)=5\Leftrightarrow5=5\)(t/m với mọi \(-3\le x\le2\))

Vậy \(B_{min}=5\)(Dấu '='\(\Leftrightarrow-3\le x\le2\))

Bình luận (0)
H24
Xem chi tiết
VC
4 tháng 9 2017 lúc 20:25

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

Bình luận (0)
NK
Xem chi tiết
VH
2 tháng 4 2019 lúc 21:47

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

Bình luận (0)
NK
2 tháng 4 2019 lúc 21:53

thi ban tim ho mk

Bình luận (0)
TD
Xem chi tiết
NQ
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Bình luận (0)
TD
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Bình luận (0)
NA
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
CC
Xem chi tiết
MS
16 tháng 8 2017 lúc 12:11

\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)

Ta thấy:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)

Vậy \(A>0\)

\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)

\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)

Dấu "=" xảy ra khi:

\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)

Vậy \(MIN_A=\dfrac{33}{5}\)

Bình luận (0)
DH
16 tháng 8 2017 lúc 13:28

Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!

Với mọi giá trị của \(x\in R\) ta có:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)

\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)

Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì

\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)

\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)

\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)

Vậy...........

Chúc bạn học tốt!!!

Bình luận (2)
VD
Xem chi tiết