Những câu hỏi liên quan
LN
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
MY
10 tháng 6 2021 lúc 12:17

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

Bình luận (0)
NT
Xem chi tiết
NM
27 tháng 9 2021 lúc 14:13

\(a,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{5x}{50}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)

\(c,\) Áp dụng t/c dtsbn

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\\ \Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)

\(d,\) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(xy=54\Rightarrow2k\cdot3k=54\Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=9\\x=-6;y=-9\end{matrix}\right.\)

\(e,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\Rightarrow x=5k;y=3k\)

\(x^2-y^2=4\Rightarrow25k^2-9k^2=4\Rightarrow16k^2=4\Rightarrow k^2=\dfrac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2};y=\dfrac{3}{2}\\x=-\dfrac{5}{2};y=-\dfrac{3}{2}\end{matrix}\right.\)

\(f,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\left\{{}\begin{matrix}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-1\\x+y+z=3z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-1=\dfrac{1}{2}\\3z+2=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
H9
2 tháng 10 2023 lúc 17:16

Bài 5:

a) \(x^2-xy+x-y\)

\(=\left(x^2-xy\right)+\left(x-y\right)\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b) \(xz+yz+4x+4y\)

\(=\left(xz+yz\right)+\left(4x+4y\right)\)

\(=z\left(x+y\right)+4\left(x+y\right)\)

\(=\left(z+4\right)\left(x+y\right)\)

c) \(x^2-x-y^2+y\)

\(=\left(x^2-y^2\right)-\left(x-y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

d) \(x^2+2x+2z-z^2\)

\(=\left(x^2-z^2\right)+\left(2x+2z\right)\)

\(=\left(x+z\right)\left(x-z\right)+2\left(x+z\right)\)

\(=\left(x+z\right)\left(x-z+2\right)\)

Bình luận (0)
HN
Xem chi tiết
HL
2 tháng 4 2023 lúc 20:56

1.B

2.A

3.B

4.C

5.B

6.D

7.C

8.D

9.B

10.A

Bình luận (1)
GQ
Xem chi tiết
MN
Xem chi tiết
LH
25 tháng 5 2021 lúc 15:34

Có \(sđ\stackrel\frown{BD}=\widehat{BOD}=40^0\)  

Có \(\widehat{BED}=\dfrac{1}{2}\left(sđ\stackrel\frown{BD}+sđ\stackrel\frown{AC}\right)\)

\(\Leftrightarrow\)\(60^0=\dfrac{1}{2}\left(40^0+sđ\stackrel\frown{AC}\right)\) \(\Leftrightarrow sđ\stackrel\frown{AC}=80^0\)

Ý B

Bình luận (0)
H24
25 tháng 5 2021 lúc 15:36

B

`sdBC=1/2(sdBD+sdAC)`

`=>sdAC=2sdBC-sdBD`

`<=>sdAC=120^o-40^o=80^o`

Bình luận (0)
LN
Xem chi tiết