Giải tam giác vuông ABC, biết A=90o
a. a=5cm, b=10cm
b. b=12cm, c=7cm
Vẽ hình giúp
Cho ∆ABC vuông tại A. a) Biết AC = 5cm, AC = 12cm. Giải tam giác vuông ABC. b) Biết AC = 5cm, góc B = 40°. Giải tam giác vuông ABC
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)
nên \(\widehat{B}\simeq23^0\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}\simeq90^0-23^0=67^0\)
b: Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-40^0=50^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2\)
=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)
Câu 4: a, Giải tam giác ABC vuông tại B. Biết góc A = 30°,AC= 10cm. b, Giải tam giác ABC vuông tại C. Biết góc B = 30°,AC =5cm
b: AB=10cm
\(BC=5\sqrt{3}\left(cm\right)\)
\(\widehat{C}=60^0\)
Cho tam giác ABC vuông tại A. Gọi BC = a, AC = b, AB = c. Giải tam giác ABC, biết:
a, b = 10 cm, C ^ = 30 0
b, a = 20cm,
B
^
=
35
0
c, a = 15cm, b = 10cm
d, b = 12cm, c = 7cm
a, Sử dụng tỉ số cosC và sinC, tính được
a = 20 3 3 cm, c = 10 3 3 cm và B ^ = 60 0
b, Sử dụng tỉ số sinB và cosB, tính được:
b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm
c, Sử dụng định lý Pytago và tỉ số sinB, tính được:
c = 5 5 cm, sinB = 10 15 => B ^ ≈ 41 , 8 0 , C ^ ≈ 48 , 2 0
d, Tương tự c) ta có
a = 193 cm, tanB = 12 7 => B ^ ≈ 59 , 7 0 , C ^ = 30 , 3 0
Giải tam giác ABC vuông tại A, biết rằng:
a) b = 8cm, C = 60°
b) c = 12cm, C = 30°
c) a = 10cm; C = 45°
d) c = 42cm; b = 36cm
a) Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=30^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan60^0\)
\(\Leftrightarrow AB=8\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=256\)
hay BC=16cm
b: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan60^0\)
nên \(AC=12\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=576\)
hay BC=24cm
Giải tam giác vuông ABC, biết góc A = 90 độ và:
a, A= 15cm; B= 10cm
b, B= 12cm; C= 7cm
cho tam giác abc vuông tại b. tìm các tỉ số lượng giác của góc c sau đó tính góc b,c khi: a,bc=5cm,ab=12cm b,bc=10cm,ac=3cm c,ac=5cm,ab:3cm.
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao? Cần gấp
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
Giải tam giác vuông ABC vuông tại A biết :
a, AB=5cm , góc B=30o
b, AC=7cm , góc B=40o
c, BC=10cm , AB=4cm