Những câu hỏi liên quan
OK
Xem chi tiết
MP
12 tháng 11 2018 lúc 20:04

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)

b;c;d tương tự hết

Bình luận (0)
NT
19 tháng 11 2022 lúc 22:42

b: a/b=c/d

nên 3a/3b=2c/2d

=>a/b=c/d=(3a+2c)/(3b+2d)

c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)

d: a/c=b/d

nên 5a/5c=2b/2d

=>a/c=b/d=(5a-2b)/(5c-2d)

Bình luận (0)
H24
Xem chi tiết
H24
15 tháng 10 2018 lúc 7:49

Mình hướng dẫn thôi nhé:

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm

Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:

\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm

Bình luận (0)
TL
Xem chi tiết
TL
29 tháng 10 2021 lúc 15:14

Helpp 

Bình luận (0)
NT
29 tháng 10 2021 lúc 23:17

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5bk+2b}{5bk-2b}=\dfrac{5k+2}{5k-2}\)

\(\dfrac{5c+2d}{5c-2d}=\dfrac{5dk+2d}{5dk-2d}=\dfrac{5k+2}{5k-2}\)

Do đó: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5c+2d}{5c-2d}\)

Bình luận (0)
TL
31 tháng 10 2021 lúc 10:05

giải nốt câu b

 

Bình luận (0)
BA
Xem chi tiết
H24
20 tháng 11 2018 lúc 18:15

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=b.k;b=d.k\)

Thay :

(1) : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3bk+2b}{3bk-2b}=\dfrac{b.\left(3.k+2\right)}{b.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

(2) : \(\dfrac{3c+2d}{3c-2d}=\dfrac{3dk+2d}{3dk-2d}=\dfrac{d.\left(3.k+2\right)}{d.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

Do đó : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)

Bình luận (0)
NV
Xem chi tiết
NT
17 tháng 12 2022 lúc 12:34

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)

\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)

=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)

b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)

=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
KG
Xem chi tiết
LP
2 tháng 8 2023 lúc 10:29

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

Bình luận (0)
NT
Xem chi tiết
MS
2 tháng 9 2017 lúc 7:31

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a+2b}{b}=\dfrac{bk+2b}{b}=\dfrac{b\left(k+2\right)}{b}=k+2\)

\(\dfrac{c+2d}{d}=\dfrac{dk+2d}{d}=\dfrac{d\left(k+2\right)}{d}=k+2\)

Vậy \(\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\Rightarrowđpcm\)

\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrowđpcm\)

Bình luận (0)
MP
2 tháng 9 2017 lúc 7:37

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow ad+2bd=bc+2bd\)

\(\Leftrightarrow d\left(a+2b\right)=b\left(c+2d\right)\Leftrightarrow\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\left(đpcm\right)\)

b) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow2ad=2bc\Leftrightarrow ad+ad=bc+bc\)

\(\Leftrightarrow ad-bc=bc-ad\Leftrightarrow ac+ad-bc-bd=ac+bc-ad-bd\)

\(\Leftrightarrow a\left(c+d\right)-b\left(c+d\right)=c\left(a+b\right)-d\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

Bình luận (0)
NH
2 tháng 9 2017 lúc 8:08

a)\(\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=b.k\\c=dk\end{matrix}\right.\)

\(\dfrac{a+2b}{b}=\dfrac{bk+2b}{b}=\dfrac{b\left(2+k\right)}{b}=k+2\left(1\right)\)

\(\dfrac{c+2d}{d}=\dfrac{dk+2d}{d}=\dfrac{d\left(k+2\right)}{d}=k+2\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\)

Bình luận (0)