tìm a b sao cho x^4 +ax^3+bx-1 chia hết cho x^3+ax+b giúp mik với
Xác định các hằng số a,b sao cho
a) x4+ax3+bx-1 chia hết cho x2-1
b) x3+ax+b chia hết cho x2+x-2
Mn giúp mik với
tìm a; b sao cho :
a) ( x^3 + ax^2 - 4 ) chia hết cho ( x^2 + 4x + 4 )
b) ( x^4 + ax^3 + bx - 1 ) chia hết cho ( x^2 - 1 )
mn làm giúp mk nha ! cảm ơn mn nhiều thật nhiều !!!
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
Tìm a,b:
a/ x4+ax+b chia hết cho x2-4
b/ x4+ax3+bx-1 chia hết cho x2-1
c/ x4+ax2+b chia hết cho x2-x+1
d/ax4+bx3+1 chia hết cho (x-1)2
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
giúp mình với:
tìm hệ số a sao cho đa thức: 2x2-ax+5 chia cho đa thức 2x-3 có số dư bằng 2
tìm hệ số a và b sao cho đa thức: ax3+bx-24 chia hết cho (x+1)(x+3)
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé