tìm số tự nhiên n,biết:
1/2.2n+4.2n=9.5n
tìm n
1/2 . 2n+4.2n=9.5n
Đáp án:
12.2n+4.2n=9.5n12.2n+4.2n=9.5n
2n.(12+4) =9.5n2n.(12+4) =9.5n
2n.92 =9.5n2n.92 =9.5n
2n =9:92.5n2n =9:92.5n
2n =2.5n2n =2.5n
2n:5n =22n:5n =2
(25)n =2(25)n =2
Mà (25)n≠2(25)n≠2 nên không có giá trị nào của n thỏa mãn
Vậy n∈{∅}
T.I.C.K NHÉ
Tìm số nguyên n, biết
1 ) 2 − 1 .2 n + 4.2 n = 9.2 5
2 ) 1 2 .2 n + 4.2 n = 9.2 5
3 ) 32 − n .16 n = 2048
4 ) 5 2 n + 1 = 125 n + 25
Tìm n biết
a, \(\dfrac{1}{2}\). 2n + 4. 2n = 9.5n
\(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot5^n\)
\(\Leftrightarrow2^n=2\cdot5^n\)
\(\Leftrightarrow2^{n-1}=5^n\)
Đến đây thì hình như là lớp 12 mới học, xin lỗi bạn!
Tìm x, biết:
a. \(\dfrac{1}{2}.2^{n^{ }}+4.2^n=9.5^n\) b. \(2^n\left(\dfrac{1}{2}+4\right)=\) 9.5n c.2n-1.9=9.5n
1 Tìm số tự nhiên n, biết n+3 chia hết cho n+1.
2 Tìm số tự nhiên n nhỏ nhất khi chia 6,7,9 được số dư theo thứ tự là 2,3,5.
1, \(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=1+\frac{2}{n+1}\)
Suy ra n+1 phải là Ư(2)={-2;-1;1;2}
\(\Rightarrow n=-3;-2;0;1\)
A. Tìm số tự nhiên a, biết rằng với mọi n ϵ N ta có an = 1
B. Tìm số tự nhiên x mà x50 = x
a: a^n=1
=>a^n=1^n
=>a=1
b: x^50=x
=>x^50-x=0
=>x(x^49-1)=0
=>x=0 hoặc x^49-1=0
=>x=0 hoặc x^49=1
=>x=0 hoặc x=1
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Bài 1: Tìm n là số tự nhiên, biết ( n+6 ) chia hết n
Bài 2: Tìm x là số tự nhiên sao cho ( 2.n - 1) . (y+ 3)=12
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
Tìm số tự nhiên y lớn hơn 1 biết tồn tại số tự nhiên n để:
y^2 = 1!+ 2! + 3! +.... + n!
bài1
Tìm số tự nhiên nhỏ nhất biết số đó khi chia cho 3 dư 1,chia cho 5 dư 3,chia cho 7 dư 5
Bài 2
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 3
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 4
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105