Phan tich n^2+n+1 thanh nhan tu
phan tich thanh nhan tu:
10x^2-1
\(10x^2-1=\left(\sqrt{10}x-1\right)\left(\sqrt{10}x+1\right)\)
\(\left(10x\right)^2-1=\left(10x-1\right)\left(10x+1\right)\)
phan tich thanh nhan tu 9a^2-6ab+b^2-1
\(9a^2-6ab+b^2-1=\left(3a-b\right)^2-1^2=\left(3a-b-1\right)\left(3a-b+1\right)\)
9a^2 - 6ab + b^2 - 1= (3a)^2 - 2.3a.b + b^2 -1
= (3a - b)^2 - 1^2
= (3a - b - 1).(3a - b + 1)
9a2 - 6ab + b2 - 1 = (3a - b)2 - 1
= (3a - b + 1)(3a-b-1)
Phan tich thanh nhan tu: (2x +1)(x+1)^2(2x+3)
phan tich 4x^4-12x^2+1 thanh cac nhan tu
(4a4-12a2+1)=(4a4-8a2+1)-4a2=(2a2-1)2-4a2=(2a2-2a-1)(2a2+2a-1)
phan tich da thuc thanh nhan tu: 4x^4-32x^2+1
4x^4 - 32x^2 +1 = 4x^4 + 4x^2 +1 - 36x^2 = (2x^2 + 1)^2 - 36x^2 = (2x^2 - 6x + 1)(2x^2 + 6x + 1)
4 x4 - 32 x2 + 1
= ( 2 x2 )2 - 2 . 2x2. 8 + 64 - 63
= ( 2 x2 - 8 )2 - 63
= ( 2x2 - 8 + √63 ) ( 2x2 - 8 - √63 )
Xong
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
Phan tich da da thuc thanh nhan phan tu
(x^2+x+1)(x^2+x+2)-12
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
phan tich da thuc thanh nhan tu 1-3x-x^3+3x^2
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
phan tich da thuc thanh nhan tu: x(x+2)(x^2+2x+2)+1
x(x+2)(x^2+2x+2)+1 = (x^2+2x)(x^2+2x+1)+1
Đặt x^2+2x+1=y ta được:
(y-)(y+1)+1=y^2-1+1=y^2
= (x^2+2x+1)^2
= ( x + 1 )^4