cho A: 1/3+1/3^2+1/3^3+...+1/3^99 chứng minh rằng A<1/2
Bài 1:
a) Cho A = 1/2 + (1/2)^2 + (1/2)^3 +...+ (1/2)^99
Chứng minh rằng: A<1
b) Cho B = 1/3 + 2/3^2 + 3/3^3 + ... + 100/3^100
Chứng minh rằng: B<3/4
\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2A-A=1-\frac{1}{2^{99}}\)
\(A=1-\frac{1}{2^{99}}< 1\)
\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\)
Ủng hộ mk nha ^_^
Chứng Minh Rằng
a. cho biểu thức A= 3 + 3^2+ 3^3+ 3^4+...+ 3^100 và B= 3^100-1.Chứng Minh rằng : A<B
b. Cho A= 1+4+4^2+...+4^99, B= 4^100. Chứng Minh Rằng : A<B/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(A=1+4+4^2+...+4^{99}\)
\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
hay A<B (đpcm)
Chứng minh rằng : A = 1/3+1/3^2+1/3^3+...+1/3^99<1/2
Cho A=1+3+31+32+32+…+399
a. Chứng minh rằng A chia hết cho 4
b. Chứng minh rằng A chia hết cho 41 thì A chia hết cho 164
mình cũng chỉ làm được câu a thôi. hì hì
1, Chứng minh rằng 1:3 - 2:3^2 + 3:3^3 - 4:3^4 + ...+ 99:3^99 - 100:3^100 < 3:16
2, Cho A= 1x3x5x7x...x2001 . Chứng minh rằng trong các số 2A , 2A+1 , 2A-1 không có số nào là số chính phương
3, Cho a>0 thoả mãn ax ( a+1 ) x ( a+2 ) x ... x ( a+2015 ) = 2015 . Chứng minh rằng a<1: 2014!
4, Tìm 10a+b sao cho ( a^2 + b^2 ) : ( 10a + b ) có giá trị lớn nhất
5, Tìm x,y thuộc Z thoả mãn 4x2 + 4x + y2 = 24
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
Cho A=1/2^2+1/3^2+1/4^2+.......+1/99^2+1/100^2.Chứng minh rằng A<3/4
Cho p = 1+3^1+3^2 + ............................+3^99
a, Chứng minh rằng p:4
b, chứng mình rằng p:40
p = (1 + 31) + (32 + 33) + ...+ (398 + 399) = 4.1 + 32.(1+ 31) + ...+ 398.(1+ 31) = 4.1 + 32.4 + ....+ 398.4
= 4. (1 + 32 + 34 + ...+ 398) chia hết cho 4
=> p chia hết cho 4
p = (1+ 31+ 32 + 33) + (34 + 35 + ...+ 37) + ...+ (396 + 397 + 398 + 399)
= 40 + 34.(1 + 31 + 32+ 33) + ....+ 396. (1+31 + 32 + 33)
= 40 + 34. 40 + ....+ 396.40 = 40.(1 + 34 + ...+ 396) chia hết cho 40
=> p chia hết cho 40
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
A = -1+3-3^2+3^3-...............-3^98+3^99
chứng minh rằng A chia hết cho 4