Những câu hỏi liên quan
DA
Xem chi tiết
H24
2 tháng 10 2017 lúc 22:41

Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3

= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3

Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0

=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3

= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )

= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )

Bình luận (0)
LL
Xem chi tiết
ND
Xem chi tiết
VC
17 tháng 7 2018 lúc 12:21

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

Bình luận (0)
HN
17 tháng 1 2021 lúc 18:31

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

Bình luận (0)
TT
Xem chi tiết
AN
19 tháng 10 2017 lúc 16:10

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

Bình luận (0)
LD
Xem chi tiết
PN
10 tháng 1 2016 lúc 19:33

\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=xy\left(x+y+z\right)-xyz+\left(yz+xz\right)\left(x+y+z\right)\)

\(=xy\left(x+y+z-z\right)+z\left(x+y\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Bình luận (0)
NH
Xem chi tiết
TH
Xem chi tiết
TT
18 tháng 10 2019 lúc 16:05

(x -y)3  - 1 - 3(x -y)(x - y - 1)

= (x -y)3  - 3(x -y)(x - y - 1) - 1

Đặt x - y = t, khi đó ta có:

    t3  -  3t. (t  - 1) - 1

=   t3  -  3t2  + 3t - 1

=  (t  - 1)3

Thay t = x - y vào (t - 1)3 , ta có:  ( x - y - 1)3

Vậy (x -y)3  - 1 - 3(x -y)(x - y - 1) =  ( x - y - 1)3

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
GP
Xem chi tiết
EC
2 tháng 7 2021 lúc 10:21

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

Bình luận (0)
 Khách vãng lai đã xóa