Tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
Đặt \(D=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(=\frac{2a+9+5a+17-3a}{a+3}\)
\(=\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
\(\Rightarrow14⋮a+3\)
\(\Rightarrow a+3\inƯ\left(14\right)\)
Đến đây làm nốt
Đặt \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(\Rightarrow A=\frac{\left(2a+9\right)+\left(5a+17\right)-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)
\(=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
Vì \(4\inℤ\)\(\Rightarrow\)Để A nguyên thì \(14⋮\left(a+3\right)\)\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
Vậy \(a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)để a là số nguyên
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{4a+26}{a+3}\)
Để Phân số trên nguyên
=> 4a + 26 chia hết cho a + 3
=> 4a + 12 + 14 chia hết cho a + 3
Vì 4a + 12 chia hết cho a + 3
=> 14 chia hết cho a + 3
=> a + 3 thuộc Ư(14)
=> a + 3 thuộc {1; -1; 2; -2; 7; -7; 14; -14}
=> a thuộc {-2; -4; -1; -5; 4; -11; 11; -17}
Tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
tìm số nguyên để
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
tìm số nguyên a để\(\frac{2a+9}{a+3}\)=\(\frac{5a+17}{a+3}\)=\(\frac{3a}{a+3}\) là số nguyên
Sửa đề :\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{3a}{a+3}\)
\(=\frac{2a+9+5a+17+3a}{a+3}\)
\(=\frac{10a+26}{a+3}\)
\(=\frac{10a+30-4}{a+3}\)
\(\Rightarrow4⋮a+3\)
\(\Rightarrow a+3\in\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow a\in\left(-2;-4;-1;-5;1;-7\right)\)
Tìm số nguyên a để: \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
a ) Tìm giá trị lớn nhất của biểu thức : \(B=x+\frac{1}{2}-|x-\frac{2}{3}|\)
b ) Tìm số nguyên a để : \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Tìm \(a\in Z\) để: \(B=\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Ta có:
B = \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
B = \(\frac{\left(2a+9\right)-\left(5a+17\right)-3a}{a+3}\)
B = \(\frac{2a+9-5a-17-3a}{a+3}\)
B = \(\frac{-6a-8}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}=-6+\frac{10}{a+3}\)
Để B \(\in\)Z <=> 10 \(⋮\)a + 3 <=> a + 3 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
a + 3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
a | -2 | -4 | -1 | -5 | 2 | -8 | 7 | -13 |
Vậy ...
\(B=\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(B=\frac{2a+9-5a-17-3a}{a+3}\)
\(B=\frac{-6a-8}{a+3}\inℤ\)
\(\Leftrightarrow-6a-8⋮a+3\)
\(\Rightarrow-6a-18+10⋮a+3\)
\(\Rightarrow-6\left(a+3\right)+10⋮a+3\)
\(\Rightarrow10⋮a+3\)
\(\Rightarrow a+3\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)
\(\Rightarrow a\in\left\{-4;-2;-5;-1;-8;2;-13;7\right\}\)
Tìm các số nguyên a để biểu thức sau có giá trị là số nguyên:
a) \(M=\frac{2a+8}{5}+\frac{-a-7}{5}\)
b)\(N=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{-3a}{a+3}+\frac{-4a-23}{a+3}\)