BB

Tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên

SN
3 tháng 10 2015 lúc 21:21

\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)

\(=\frac{4a+12}{a+3}+\frac{14}{a+3}=\frac{4\left(a+3\right)}{a+3}+\frac{14}{a+3}=4+\frac{14}{a+3}\in Z\)

\(\Rightarrow\frac{14}{a+3}\in Z\Rightarrow\)14 chia hết cho a+3

=>a+3=-14;-7;-2;-1;1;2;7;14

=>a=-17;-10;-5;-4;-2;-1;4;11

Bình luận (0)
TD
3 tháng 10 2015 lúc 21:22

\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}\)

=> 4a+26 chia het cho a+3

=> 4a+12+14 chia het cho a+3

=> 4(a+3) +14 chia het cho a+3

=> 14 chia het cho a+3

=> a+3= -1;1;-2;2;-7;7;-14;14

=> a= -4;-2;-5;-1;-10;4;-17;11

Bình luận (0)
DL
3 tháng 10 2015 lúc 21:24

Ta có: \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a-26}{a+3}\)

Để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì (4a-26) chia hết cho a+3

nên 4a+12-40 chia hết cho a+3

hay 4(a+3)-40 chia hết cho a+3

Vì a+3 chia hết cho a+3 nên 4(a+3) chia hết cho a+3 mà 4(a+3)-40 chia hết cho a+3

nên 40 chia hết cho a+3 hay a+3 E Ư(40)={1;2;4;5;8;10;20;40}

nên aE{-2;-1;1;2;5;7;17;37}

Vậy để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì aE{-2;-1;1;2;5;7;17;37}

Bình luận (0)
DA
22 tháng 1 2018 lúc 20:13

Ngu mới ko biết

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
BB
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
YH
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết