Những câu hỏi liên quan
LH
Xem chi tiết
H24
5 tháng 11 2017 lúc 17:27

\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)

\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{1}{\sqrt{x}-2}\)

vậy \(A=\frac{1}{\sqrt{x}-2}\)

A có nghĩa khi \(\sqrt{x}-2>0\)

                    \(\Leftrightarrow\sqrt{x}=2\)

                      \(\Leftrightarrow x=4\)

vậy \(x=4\) thì A có nghĩa

b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)

theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)

                                     \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)

                                      \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\)  hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)

vậy \(4< x< \frac{25}{4}\) thì \(A>2\)

Bình luận (0)
H24
5 tháng 11 2017 lúc 17:35

mình sửa lại chút chỗ dòng thứ 2 từ dưới lên

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\in\varnothing\end{cases}}\)

mải quá nên mình ấn mhầm cho mk xin lỗi

Bình luận (0)
NT
Xem chi tiết
VB
12 tháng 8 2021 lúc 18:00

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BN
Xem chi tiết
TQ
10 tháng 12 2016 lúc 17:59

Bạn ơi !

Bình luận (0)
TQ
10 tháng 12 2016 lúc 18:00

Hình như là đề sai rồi đúng k ??

Bình luận (0)
TN
25 tháng 1 2017 lúc 15:34
Ta có : A = \(\frac{\sqrt{x+1}}{\sqrt{x-3}}=\sqrt{\frac{x-3+4}{x-3}}=\sqrt{\frac{x-3}{x-3}}+\sqrt{\frac{4}{x-3}}=1+\frac{2}{\sqrt{x-3}}\) Để A ϵZ thì \(\frac{2}{\sqrt{x-3}}\)ϵZ 2 \(\sqrt{x-3}\) &#x03F5;" id="MathJax-Element-10-Frame">ϵ {-1; 1; 2 ; -2} Vì x&#x2212;3&#x2265;0&#x21D2;x&#x2212;3={1;2}" id="MathJax-Element-11-Frame">≥0⇒x&#x2212;3&#x2265;0&#x21D2;x&#x2212;3={1;2}">={1;2} TH1 : \(\sqrt{x-3}\)= 1 x - 3 = 1 x = 4 TH2 : \(\sqrt{x-3}\)= 2 \(\sqrt{x-3}\) = \(\sqrt{4}\) x -3 = 4 x = 7 Vậy x ϵ {4;7}
Bình luận (1)
TP
Xem chi tiết
CT
27 tháng 3 2019 lúc 21:03

A= căn x-3+4/ căn x-3

A=1+4 / căn x-3

để A thuộc Z thì 4 chia hết cho x-3

hay x-3 là ước của 4

x-3 thuộc (1;-1;2;-2;4;-4)

x thuộc (4;2;5;1;7;-1)

vậy ....

Bình luận (0)
TP
27 tháng 3 2019 lúc 21:03

mình cần rất gấp

Bình luận (0)
CT
27 tháng 3 2019 lúc 21:05

trl òi đó

mik vs

hok tốt

Bình luận (0)
CH
Xem chi tiết
EC
25 tháng 11 2019 lúc 21:28

Ta có:

A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=> \(x\in\left\{16;4;25;1;49\right\}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
NT
25 tháng 11 2019 lúc 21:33

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)

ĐKXĐ: \(x\in R\)

Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)

Để A là một số nguyên <=>  \(\frac{4}{\sqrt{x}-3}\in Z\)

                                     <=>  \(4⋮\sqrt{x}-3\)

                                     <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)

                                     <=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

                                      <=> \(x\in\left\{16;25;49;4;1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
ND
13 tháng 11 2015 lúc 20:58

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}\)

 A là số nguyên ,=> \(\sqrt{x}-3\)là Ư(4) ={ 1;2;4}

=> x =16

=> x =25

=> x= 47

Bình luận (0)
NG
Xem chi tiết
AM
13 tháng 6 2015 lúc 16:24

\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}=\sqrt{\frac{x+1}{x-3}}=\sqrt{\frac{x-3}{x-3}}+\sqrt{\frac{4}{x-3}}=1+\frac{2}{\sqrt{x-3}}\)

Để A nguyên thì \(\sqrt{x-3}\inƯ\left(2\right)\)

Mà Ư(2)={+-1;+-2}

*)\(\sqrt{x-3}=^+_-1\Rightarrow x-3=1\Rightarrow x=4\)

*)\(\sqrt{x-3}=^+_-2\Rightarrow x-3=4\Rightarrow x=7\)

Vậy x={4;7} thì A nguyên

Bình luận (0)
NN
22 tháng 10 2017 lúc 10:13

cảm ơn bạn lắm mk đang cần 2 bài dạng này

Bình luận (0)
H24
18 tháng 11 2017 lúc 21:07

/sqrt{x}

Bình luận (0)
HH
Xem chi tiết