Những câu hỏi liên quan
TP
Xem chi tiết
TP
Xem chi tiết
TA
25 tháng 7 2017 lúc 15:10

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

Bình luận (0)
DT
Xem chi tiết
NM
24 tháng 10 2021 lúc 15:00

\(a,=x^2-mx-nx+mn=x\left(x-m\right)-n\left(x-m\right)=\left(x-n\right)\left(x-m\right)\\ b,=a\left(x-y\right)-b\left(x-y\right)+\left(a-b\right)\\ =\left(x-y\right)\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(x-y+1\right)\)

Bình luận (0)
NT
24 tháng 10 2021 lúc 15:00

b: \(=a\left(x-y\right)-b\left(x-y\right)+a-b\)

\(=\left(x-y+1\right)\left(a-b\right)\)

Bình luận (0)
NG
24 tháng 10 2021 lúc 15:02

a) \(x^2-\left(m+n\right)x+mn=\left(x^2-n\cdot x\right)-\left(m\cdot x-m\cdot n\right)=x\left(x-n\right)-m\left(x-n\right)=\left(x-m\right)\left(x-n\right)\)

b) \(ax+by+a-bx-ay-b\)

   \(=\left(ax-ay+a\right)-\left(bx-by+b\right)\)

   \(=a\left(x-y+1\right)-b\left(x-y+1\right)\)

   \(\left(a-b\right)\left(x-y+1\right)\)

Bình luận (0)
MR
Xem chi tiết
KT
22 tháng 7 2018 lúc 19:34

\(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

mk chỉnh lại đề

\(x^2-2xy+y^2-z^2+2zt+t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

mk chỉnh lại đề:

\(ax^2+cx^2-ay+ay^2-cy+cy^2\)

\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)

\(=\left(a+c\right)\left(x^2-y+y^2\right)\)

\(ax^2+ay^2-bx^2-by^2+b-a\)

\(=x^2\left(a-b\right)+y^2\left(a-b\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+y^2-1\right)\)

\(ac^2-ad-bc^2+cd+bd-c^3\)

\(=a\left(c^2-d\right)-b\left(c^2-d\right)-c\left(c^2-d\right)\)

\(=\left(c^2-d\right)\left(a-b-c\right)\)

Bình luận (0)
MR
22 tháng 7 2018 lúc 19:50

trả lời giùm mình với

Bình luận (0)
MC
Xem chi tiết
LC
1 tháng 8 2019 lúc 16:09

a) \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3-y\right)\left(x-3+y\right)\)

Bình luận (0)
LC
1 tháng 8 2019 lúc 16:10

b) \(9-x^2+2xy-y^2\)

\(=9-\left(x^2-2xy+y^2\right)\)

\(=3^2-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

Bình luận (0)
LC
1 tháng 8 2019 lúc 16:11

c) \(ax-ay+bx-by\)

\(=a\left(x-y\right)+b\left(x-y\right)\)

\(=\left(x-y\right)\left(a+b\right)\)

Bình luận (0)
H24
Xem chi tiết
CH
5 tháng 9 2016 lúc 18:19

\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
(ax+ay+bx+by)(ax−ay+by−bx) \(=\left(ax+ay+bx+by\right)\left(ax-ay+by-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
haha icon-chat

Bình luận (0)
HN
5 tháng 9 2016 lúc 18:20

\(\left(ax+by\right)^2-\left(ay+bx\right)^2=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)

\(=\left[a\left(x-y\right)-b\left(x-y\right)\right].\left[a\left(x+y\right)+b\left(x+y\right)\right]\)

\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)

Bình luận (0)
CH
5 tháng 9 2016 lúc 18:22

Xin lỗi!
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+bx-by\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)

Bình luận (0)
MM
Xem chi tiết
NQ
15 tháng 10 2017 lúc 19:46

a) ko bt làm

Bình luận (0)
H24
Xem chi tiết
PD
12 tháng 10 2018 lúc 20:41

\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)

\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)

\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)

\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

Bình luận (0)
PD
12 tháng 10 2018 lúc 20:42

\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)

\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)

Bình luận (0)
BT
12 tháng 10 2018 lúc 20:54

dễ quá e gì ơi
a hướng dẫn thôi tự trình bày nhá
a)nhóm các hạng tử có a với a, có b với b rồi đặt nhân tử chung (kết quả là (a+b)(x+y)
b)nhóm hai hạng tử đầu với nhau 2 hạng tử cuối với nhau rồi đặt nhân tử chung ở nhóm 1 ra,sau đó sẽ xuất hiện tiếp nhân tử chung là x+1 thì đặt tiếp ra kế quả là (xy+1)(x+1)
c)đầu tiên là nhân đơn thức với đa thức hết ra sau đó nhóm như sau :
x^2 với -ax ; -bx với ab rồi đặt nhân tử chung ra và rút gọn được kết quả là (x-a)(x-b)
d)nhóm 2 cái đầu với nhau 2 cái cuối với nhau rồi đặt nhân tử chung kết quả là (x+y)(xy-1)
e)nhóm 2 cái đầu với nhau 2 cái cuối với nhau rồi đặt nhân tử chung kết quả là (x^2+y)(a-b)
câu cuối cùng cũng nhóm 2 cái đầu với 2 cái cuối rồi đặt nhân tử chung kết quả là (a-2)(x-a)

chúc e học tốt

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 7 2018 lúc 11:06

d) ax+ ay - bx2 - by

= ( ax2 + ay ) - ( bx2 + by )

= a ( x2 + y ) - b ( x2 + y )

=  ( x2 + y )( a - b )

Bình luận (0)
NT
29 tháng 7 2018 lúc 11:07

c) x2y + xy2 - x - y

= ( x2y + xy2 ) - ( x + y )

= xy ( x + y ) - ( x+ y )

= ( x + y ) ( xy - 1 )

Bình luận (0)
NT
29 tháng 7 2018 lúc 11:09

b) ax + by + ay + bx

= ax + ay + bx + by

= a ( x + y ) + b ( x + y )

= ( x + y ) ( a + b )

Bình luận (0)