tim gtnn cua bt x\(^2\)+14x+y\(^2\)-12y+47
cho 2 so x va y thoa man 3x+y=1
a) Tim GTNN cua bt M=3x^2+y^2
b) Tim GTLN cua bt N=x*y
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
tim gtnn cua bieu thuc
C=5x2+y2+10+4xy-14x-6y
tim gtnn va gtln cua
a)\(\frac{x^2+1}{x^2-x+1}\)
b)\(\frac{5y^2-3xy}{x^2-3xy+4y^2}\)
c)Cho \(x^2+2xy-x^2y-y+7=0\) .Tim gtnn va gtln cua \(x^2+6xy+12y^2\)
cho cac so thu cx,y thoa man 4/x^2+5/y^2 >=9 tim GTNN cua bt
Q=2x^2+6/x^2+3y^2+8/y^2
Áp dụng bđt AM-GM:
\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)
\(\ge2\sqrt{\frac{4x^2}{x^2}}+2\sqrt{\frac{9y^2}{y^2}}+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)
\("="\Leftrightarrow x=y=\pm1\)
cho x+y=1.tim GTNN cua bt x^3+y^3+2xy
\(\hept{\begin{cases}x+y=1\\x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\end{cases}\Rightarrow A=1-xy}\)
\(x+y=1\Rightarrow\left(x+y\right)^2=1\Rightarrow\left(x-y\right)^2=1-4xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\le\frac{1}{4}\)
GTNN A=1-1/4=3/4 khi xy=1/4
tớ 0 hiểu phần (x-y)^2 >= 0 thì xy<= 1/4 của cậu
tim GTNN cua bt sau
A=(x-1)(x+2)(x+3)(x+6)
A=[(x-1)(x+6)][(x+2)(x+3)]
=(x2+5x-6)(x2+5x+6)
=(x2+5x)2-36
Ta thấy (x2+5x)2 >=0 nên (x2+5x)2-36 >=-36
Vậy GTNN của A là -36
tim GTNN cua bt
C=\(2x^2+y^2-2xy+1\)
\(C=2x^2+y^2-2xy+1\)
\(C=x^2-2xy+y^2+x^2+1\)
\(C=\left(x-y\right)^2+x^2+1\)
Do : \(\left(x-y\right)^2\) ≥ 0 ∀xy
x2 ≥ 0 ∀x
⇒ \(\left(x-y\right)^2\) + x2 + 1 ≥ 1
⇒ CMin = 1 ⇔ x = y = 0
Tìm GTNN của bt
D= x2 + y2 + xy - 12x + 12y + 100
\(D=x^2+y^2+xy-12x+12y+100\)
\(\Rightarrow2D=x^2+x^2+y^2+y^2+2xy-24x+24y+200\)
\(\Rightarrow2D=\left(x^2+2xy+y^2\right)+\left(x^2-2.x.12+12^2\right)+\left(y^2+2.x.12+12^2\right)-88\)
\(\Rightarrow2D=\left(x+y\right)^2+\left(x-12\right)^2+\left(y+12\right)^2-88\)
\(\Rightarrow2D\ge-88\Leftrightarrow D\ge-44\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-12=0\\x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=12\\y=-12\end{cases}}\)
Vậy : GTNN của \(D=-44\) tại \(x-12,y=-12\).
Bài làm
\(D=x^2+y^2+xy-12x+12y+100\)
Nhân thêm 4 vào đẳng thức trên, ta được
\(4D=4x^2+4y^2+4xy-48x+48y+400\)
\(=\left(4x^2+2.2xy+y^2\right)-24\left(2x+y\right)+3y^2-24y+400\)
\(=\left(2x+y\right)^2-2\left(2x+y\right).12+12^2+3y^2-24y+256\)
\(=\left(2x+y-12-\right)^2+3\left(y-4\right)^2+208\ge208\)
\(\Rightarrow D\ge208:4\)
\(\Rightarrow D=52\)
Dấu " = " xảy ra <=> x = 4; y = 4
Vậy giá trị của biển thứ D = 52 khi x = 4; y = 4
~ Khôg hiểu chỗ nào hỏi mik ~
# Họk tốt #
Cho x,y,z la 3 so thuc tuy y
Tim GTNN cua bt M=x^6+y^2+z^2-yz-4x-3y+2015
Các bạn giải giúp mình nha(cụ thể nhé)!